sequence_conv_op.cc 10.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/sequence_ops/sequence_conv_op.h"
C
chengduoZH 已提交
16

Y
Yang Yang 已提交
17
#include <algorithm>
18 19 20
#include <memory>
#include <string>
#include <unordered_set>
Y
Yang Yang 已提交
21

C
chengduoZH 已提交
22 23 24
namespace paddle {
namespace operators {

C
chengduoZH 已提交
25
class SequenceConvOp : public framework::OperatorWithKernel {
C
chengduoZH 已提交
26 27 28 29
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
30
  void InferShape(framework::InferShapeContext *ctx) const override {
31 32 33
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "SequenceConv");
    OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter", "SequenceConv");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "SequenceConv");
C
chengduoZH 已提交
34

C
chengduoZH 已提交
35 36
    int context_length = ctx->Attrs().Get<int>("contextLength");
    int context_start = ctx->Attrs().Get<int>("contextStart");
C
chengduoZH 已提交
37

C
chengduoZH 已提交
38 39
    auto in_dims = ctx->GetInputDim("X");
    auto filter_dims = ctx->GetInputDim("Filter");
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    PADDLE_ENFORCE_EQ(
        ctx->Attrs().Get<int>("contextStride"), 1,
        platform::errors::InvalidArgument(
            "Currently, SequenceConvOp only supports contextStride=1. But "
            "received contextStride = %u.",
            ctx->Attrs().Get<int>("contextStride")));
    PADDLE_ENFORCE_EQ(
        in_dims.size() == 2 && filter_dims.size() == 2, true,
        platform::errors::InvalidArgument(
            "Input(X, Filter) should be 2-D tensor. But received Input(X): "
            "input rank %u, input shape [%s]; received Input(Filter): "
            "input rank %u, input shape [%s].",
            in_dims.size(), in_dims, filter_dims.size(), filter_dims));
    PADDLE_ENFORCE_EQ(
        filter_dims[0], context_length * in_dims[1],
        platform::errors::InvalidArgument(
            "Filter's height should be context_length * "
            "input_hidden_size. But received: filter's height = %d, "
            "context_length * input_hidden_size = %d.",
            filter_dims[0], context_length * in_dims[1]));
C
chengduoZH 已提交
60

C
chengduoZH 已提交
61
    if (ctx->Attrs().Get<bool>("paddingTrainable")) {
C
chengduoZH 已提交
62 63
      PADDLE_ENFORCE(
          ctx->HasInput("PaddingData"),
64 65
          platform::errors::InvalidArgument(
              "Input(PaddingData) of SequenceConvOp should not be null."));
66
      framework::DDim padding_dim = ctx->GetInputDim("PaddingData");
C
chengduoZH 已提交
67 68 69 70
      int up_pad = std::max(0, -context_start);
      int down_pad = std::max(0, context_start + context_length - 1);
      int total_pad = up_pad + down_pad;
      int input_width = static_cast<int>(in_dims[1]);
S
smallv0221 已提交
71 72 73
      bool start_equals_zero = context_start == 0;
      bool length_equals_one = context_length == 1;
      bool start_length = start_equals_zero && length_equals_one;
C
chengduoZH 已提交
74

S
smallv0221 已提交
75 76 77 78 79
      PADDLE_ENFORCE_EQ(
          start_length, false,
          platform::errors::InvalidArgument(
              "If context_start is 0 and context_length is 1, paddingTrainable "
              "should be false."));
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
      PADDLE_ENFORCE_EQ(
          padding_dim.size(), 2,
          platform::errors::InvalidArgument(
              "Input(PaddingData) should be 2-D tensor. But received: "
              "input rank %u, input shape [%s].",
              padding_dim.size(), padding_dim));
      PADDLE_ENFORCE_EQ(
          padding_dim[0] == total_pad && padding_dim[1] == input_width, true,
          platform::errors::InvalidArgument("Input(PaddingData)'s shape is not "
                                            "consistent with 'context_start' "
                                            "and 'context_length'. Received "
                                            "Input(PaddingData): input rank "
                                            "%u, "
                                            "input shape [%s].",
                                            padding_dim.size(), padding_dim));
C
chengduoZH 已提交
95 96
    }

C
chengduoZH 已提交
97
    in_dims[1] = filter_dims[1];
C
chengduoZH 已提交
98
    ctx->SetOutputDim("Out", in_dims);
C
chengduoZH 已提交
99
    ctx->ShareLoD("X", "Out");
C
chengduoZH 已提交
100 101 102
  }
};

C
chengduoZH 已提交
103
class SequenceConvGradOp : public framework::OperatorWithKernel {
C
chengduoZH 已提交
104 105 106 107
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
108
  void InferShape(framework::InferShapeContext *ctx) const override {
109 110 111
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "SequenceConvGrad");
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "SequenceConvGrad");
C
chengduoZH 已提交
112

C
chengduoZH 已提交
113
    if (ctx->Attrs().Get<bool>("paddingTrainable") &&
C
chengduoZH 已提交
114
        ctx->HasOutput(framework::GradVarName("PaddingData"))) {
C
chengduoZH 已提交
115 116
      ctx->SetOutputDim(framework::GradVarName("PaddingData"),
                        ctx->GetInputDim("PaddingData"));
C
chengduoZH 已提交
117
    }
C
chengduoZH 已提交
118
    if (ctx->HasOutput(framework::GradVarName("X"))) {
119 120
      ctx->ShareDim("X", /*->*/ framework::GradVarName("X"));
      ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
C
chengduoZH 已提交
121
    }
C
chengduoZH 已提交
122 123 124 125
    if (ctx->HasOutput(framework::GradVarName("Filter"))) {
      ctx->SetOutputDim(framework::GradVarName("Filter"),
                        ctx->GetInputDim("Filter"));
    }
C
chengduoZH 已提交
126 127 128
  }
};

C
chengduoZH 已提交
129
class SequenceConvOpMaker : public framework::OpProtoAndCheckerMaker {
C
chengduoZH 已提交
130
 public:
Y
Yu Yang 已提交
131
  void Make() override {
C
chengduoZH 已提交
132 133
    AddInput(
        "X",
134
        "(LoDTensor) the input(X) is a LodTensor, which supports "
C
chengduoZH 已提交
135
        "variable-time length input sequence. The underlying tensor in "
136 137
        "this LoDTensor is a matrix with shape (T, N), where T is the "
        "total time steps in this mini-batch and N is the input_hidden_size.");
C
chengduoZH 已提交
138
    AddInput("PaddingData",
C
chengduoZH 已提交
139 140
             "(Tensor, optional) the input(PaddingData) is an optional "
             "parameter, and it is learnable. "
C
chengduoZH 已提交
141 142
             "This is a tensor with shape (P, N), where P is the "
             "top_pad + bottom_pad, N is the input_hidden_size. In order to "
C
chengduoZH 已提交
143 144 145 146
             "ensure the equal length of sequence before and after "
             "convolution, it is necessary to fill the top and bottom of each "
             "sequence according to context_length, context_stride and "
             "context_start")
C
chengduoZH 已提交
147
        .AsDispensable();
C
chengduoZH 已提交
148 149 150
    AddInput(
        "Filter",
        "(Tensor) the input(Filter) is an learnable parameter."
C
chengduoZH 已提交
151 152
        "This is a tensor with shape (K, M), where K is the "
        "context_length * input_hidden_size, M is the output feature size.");
C
chengduoZH 已提交
153 154 155 156
    AddOutput(
        "Out",
        "(LoDTensor) the output(Out) is a LodTensor, which support "
        "variable-time length output sequence. The underlying tensor in "
C
chengduoZH 已提交
157 158
        "this LoDTensor is a matrix with shape (T, M), where, T is the "
        "total time steps in this mini-batch, M is the output feature size.");
C
chengduoZH 已提交
159

C
chengduoZH 已提交
160
    AddAttr<bool>("paddingTrainable",
C
chengduoZH 已提交
161
                  "(bool, default:false) the padding data of SequenceConvOp "
C
chengduoZH 已提交
162 163
                  "is trainable or not.")
        .SetDefault(false);
C
chengduoZH 已提交
164
    AddAttr<int>("contextLength",
C
chengduoZH 已提交
165
                 "(int) the contextLength of SequenceConvOp is the "
C
chengduoZH 已提交
166
                 "height of the convolution kernel.")
C
chengduoZH 已提交
167
        .GreaterThan(0);
C
chengduoZH 已提交
168
    AddAttr<int>("contextStart",
C
chengduoZH 已提交
169
                 "(int, default:0) the contextStart of SequenceConvOp "
C
chengduoZH 已提交
170
                 "represents the beginning of the convolution of the number of "
C
chengduoZH 已提交
171 172 173 174 175
                 "rows of sequence, which can be negative. The negative number "
                 "means to pad contextStart time-steps of zeros or learnable "
                 "parameters at the beginning of each instance. The positive "
                 "number means to skip contextStart time-steps of each "
                 "instance.")
C
chengduoZH 已提交
176
        .SetDefault(0);
C
chengduoZH 已提交
177
    AddAttr<int>("contextStride",
C
chengduoZH 已提交
178
                 "(int, default:1) the contextStride of SequenceConvOp "
C
chengduoZH 已提交
179
                 "represents the stride length of convolution kernel. "
C
chengduoZH 已提交
180
                 "Currently, SequenceConvOp only supports"
C
chengduoZH 已提交
181
                 "contextStride=1.")
C
chengduoZH 已提交
182
        .SetDefault(1)
C
chengduoZH 已提交
183
        .GreaterThan(0);
C
chengduoZH 已提交
184 185

    AddComment(R"DOC(
186 187 188 189 190 191 192 193 194 195
Sequence Conv Operator.

SequenceConvOp performs convolution operation on features of contextLength
time-steps of each instance. The convolution operation calculates the output
based on the input, filter, strides and paddings parameters.
The size of each dimension of the parameters is checked during infer-shape.
In order to ensure the equal length of sequence before and after convolution,
it is necessary to fill the top and bottom of each sequence based on
context_length, context_stride and context_start.

C
chengduoZH 已提交
196 197 198 199
    )DOC");
  }
};

H
hong 已提交
200 201
template <typename T>
class SequenceConvGradOpMaker : public framework::SingleGradOpMaker<T> {
202
 public:
H
hong 已提交
203
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
204 205

 protected:
206
  void Apply(GradOpPtr<T> op) const override {
207
    op->SetType("sequence_conv_grad");
H
hong 已提交
208
    op->SetAttrMap(this->Attrs());
209

H
hong 已提交
210
    if (op->HasAttr("paddingTrainable") &&
211
        BOOST_GET_CONST(bool, op->GetAttr("paddingTrainable")) &&
H
hong 已提交
212 213
        this->HasInput("PaddingData")) {
      op->SetInput("PaddingData", this->Input("PaddingData"));
214
      op->SetOutput(framework::GradVarName("PaddingData"),
H
hong 已提交
215
                    this->InputGrad("PaddingData"));
216 217
    }

H
hong 已提交
218 219 220
    op->SetInput("X", this->Input("X"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
221

H
hong 已提交
222 223
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
224 225 226 227 228 229 230 231
  }
};

class SequenceConvGradNoNeedBufferVarsInference
    : public framework::NoNeedBufferVarsInference {
 public:
  using framework::NoNeedBufferVarsInference::NoNeedBufferVarsInference;

232 233 234
  const std::unordered_set<std::string> &operator()(
      const framework::InferNoNeedBufferVarsContext &ctx) const final {
    static const std::unordered_set<std::string> kPaddingData({"PaddingData"});
235
    if (!BOOST_GET_CONST(bool, ctx.GetAttr("paddingTrainable"))) {
236
      return kPaddingData;
237
    } else {
238
      return Empty();
239 240 241 242
    }
  }
};

C
chengduoZH 已提交
243 244 245 246
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
247
REGISTER_OPERATOR(sequence_conv, ops::SequenceConvOp, ops::SequenceConvOpMaker,
H
hong 已提交
248 249
                  ops::SequenceConvGradOpMaker<paddle::framework::OpDesc>,
                  ops::SequenceConvGradOpMaker<paddle::imperative::OpBase>);
250 251 252

REGISTER_OPERATOR(sequence_conv_grad, ops::SequenceConvGradOp,
                  ops::SequenceConvGradNoNeedBufferVarsInference);
C
chengduoZH 已提交
253 254

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
255 256 257
    sequence_conv,
    ops::SequenceConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceConvKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
258
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
259
    sequence_conv_grad,
Q
QI JUN 已提交
260 261
    ops::SequenceConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceConvGradKernel<paddle::platform::CPUDeviceContext, double>);