gru_op.cc 10.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/gru_op.h"
G
guosheng 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

namespace paddle {
namespace operators {

using framework::Tensor;

class GRUOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(%s) of GRUOp should not be null.", "Input");
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(%s) of GRUOp should not be null.", "Weight");
    PADDLE_ENFORCE(ctx->HasOutput("BatchGate"),
                   "Output(%s) of GRUOp should not be null.", "BatchGate");
    PADDLE_ENFORCE(ctx->HasOutput("BatchResetHiddenPrev"),
                   "Output(%s) of GRUOp should not be null.",
                   "BatchResetHiddenPrev");
    PADDLE_ENFORCE(ctx->HasOutput("BatchHidden"),
                   "Output(%s) of GRUOp should not be null.", "BatchHidden");
    PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
                   "Output(%s) of GRUOp should not be null.", "Hidden");
    auto input_dims = ctx->GetInputDim("Input");
    auto weight_dims = ctx->GetInputDim("Weight");
    int input_size = input_dims[1];
    int frame_size = weight_dims[0];
    PADDLE_ENFORCE_EQ(input_size, frame_size * 3,
                      "The input_size must be 3 times of frame_size in GRUOp.");
    PADDLE_ENFORCE_EQ(
        weight_dims[1], frame_size * 3,
        "The shape of Weight matrix must be [frame_size, frame_size * 3].");
49
    if (ctx->HasInput("H0")) {
G
guosheng 已提交
50 51 52 53
      auto h0_dims = ctx->GetInputDim("H0");
      PADDLE_ENFORCE_EQ(h0_dims[1], frame_size,
                        "The width of H0 must be equal to frame_size.");
    }
54
    if (ctx->HasInput("Bias")) {
G
guosheng 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
      auto bias_dims = ctx->GetInputDim("Bias");
      int bias_height = bias_dims[0];
      int bias_width = bias_dims[1];
      PADDLE_ENFORCE_EQ(bias_height, 1,
                        "The shape of Bias must be [1, frame_size * 3].");
      PADDLE_ENFORCE_EQ(bias_width, frame_size * 3,
                        "The shape of Bias must be [1, frame_size * 3].");
    }
    ctx->SetOutputDim("BatchGate", input_dims);
    ctx->SetOutputDim("BatchResetHiddenPrev", {input_dims[0], frame_size});
    ctx->SetOutputDim("BatchHidden", {input_dims[0], frame_size});
    ctx->SetOutputDim("Hidden", {input_dims[0], frame_size});
    ctx->ShareLoD("Input", "Hidden");
  }
};

class GRUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
73
  GRUOpMaker(OpProto* proto, OpAttrChecker* op_checker)
G
guosheng 已提交
74 75
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("Input",
76
             "(LoDTensor) The first input is a LodTensor, which supports "
G
guosheng 已提交
77 78 79 80
             "variable-time length input sequence. The underlying tensor in "
             "this LoDTenosr is a matrix with shape (T X 3D), where, T is the "
             "total time steps in this mini-batch, D is the hidden size.");
    AddInput("H0",
81
             "(Tensor, optional) The initial hidden state is an optional "
G
guosheng 已提交
82
             "input. This is a tensor with shape (N x D), where N is the "
83 84
             "batch size, D is the hidden size.")
        .AsDispensable();
G
guosheng 已提交
85 86
    AddInput(
        "Weight",
87 88 89 90 91
        "(Tensor) The learnable hidden-hidden weight matrix with shape "
        "(D x 3D), where D is the hidden size. The elements continuous in "
        "memory can be divided into two parts. The first part are weights of "
        "the update gate and reset gate with shape (D x 2D), and the second "
        "part are weights of output candidate with shape (D x D).");
G
guosheng 已提交
92
    AddInput("Bias",
93 94 95
             "(Tensor, optional) Bias vector with shape (1 x 3D) concating "
             "bias of the update gate, reset gate and output candidate.")
        .AsDispensable();
G
guosheng 已提交
96
    AddOutput("BatchGate",
97 98 99 100 101 102 103
              "(LoDTensor) To compute with batches, sequence data will be "
              "reorganized into several successive batches each containing "
              "data from the same time step. The LoDTensor BatchGate contains "
              "the update gate, reset gate and output candidate values "
              "organized in batches. The LoD size is 2. The first LoD contains "
              "the batch offsets and the second LoD contains the indexes in "
              "the raw sequence data.")
G
guosheng 已提交
104 105 106
        .AsIntermediate();
    AddOutput(
        "BatchResetHiddenPrev",
107 108 109
        "(LoDTensor) The reseted hidden state LoDTensor organized in batches. "
        "This LoDTensor is a matrix with shape (T X D) and has the same LoD "
        "with `BatchGate`.")
G
guosheng 已提交
110 111 112
        .AsIntermediate();
    AddOutput(
        "BatchHidden",
113 114 115
        "(LoDTensor) The hidden state LoDTensor organized in batches.  "
        "This LoDTensor is a matrix with shape (T X D) and has the same LoD "
        "with `BatchGate`.")
G
guosheng 已提交
116
        .AsIntermediate();
117 118 119 120 121
    AddOutput(
        "Hidden",
        "(LoDTensor) the hidden state LoDTensor organized in sequences. "
        "This LoDTensor is a matrix with shape (T X D) and has the same LoD "
        "with `BatchGate`.");
G
guosheng 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135
    AddAttr<std::string>("activation",
                         "(string, default tanh) "
                         "The activation type used for output candidate {h}_t.")
        .SetDefault("tanh");
    AddAttr<std::string>(
        "gate_activation",
        "(string, default sigmoid) "
        "The activation type used in update gate and reset gate.")
        .SetDefault("sigmoid");
    AddAttr<bool>("is_reverse",
                  "(bool, defalut: False) "
                  "whether to compute reversed GRU.")
        .SetDefault(false);
    AddComment(R"DOC(
136 137
GRU Operator implements part calculations of the complete GRU as following:

K
kavyasrinet 已提交
138 139 140 141
$$
update\_gate: u_t = actGate(xu_t + W_u * h_{t-1} + b_u) \\
reset\_gate: r_t = actGate(xr_t + W_r * h_{t-1} + b_r)  \\
output\_candidate: {h}_t = actNode(xc_t + W_c * dot(r_t, h_{t-1}) + b_c) \\
142
output: h_t = dot((1 - u_t), h_{t-1}) + dot(u_t, {h}_t)
K
kavyasrinet 已提交
143
$$
144

K
kavyasrinet 已提交
145
@note To implement the complete GRU, fully-connected operator must be used
146
before to feed xu, xr and xc as the Input of GRU operator.
G
guosheng 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
)DOC");
  }
};

class GRUGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(%s) of GRUGradOp should not be null.", "Input");
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(%s) of GRUGradOp should not be null.", "Weight");
    PADDLE_ENFORCE(ctx->HasInput("BatchGate"),
                   "Input(%s) of GRUGradOp should not be null.", "BatchGate");
    PADDLE_ENFORCE(ctx->HasInput("BatchResetHiddenPrev"),
                   "Input(%s) of GRUGradOp should not be null.",
                   "BatchResetHiddenPrev");
    PADDLE_ENFORCE(ctx->HasInput("BatchHidden"),
                   "Input(%s) of GRUOp should not be null.", "BatchHidden");
    PADDLE_ENFORCE(ctx->HasInput("Hidden"),
                   "Input(%s) of GRUGradOp should not be null.", "Hidden");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Hidden")),
                   "Input(%s@GRAD) of GRUGradOp should not be null.", "Hidden");
    auto input_dims = ctx->GetInputDim("Input");
    auto weight_dims = ctx->GetInputDim("Weight");
    int input_size = input_dims[1];
    int frame_size = weight_dims[0];
    int weight_height = weight_dims[0];
    int weight_width = weight_dims[1];
    PADDLE_ENFORCE_EQ(input_size, frame_size * 3,
                      "The input_size must be 3 times of frame_size in GRUOp.");
    PADDLE_ENFORCE_EQ(
        weight_height, frame_size,
        "The shape of Weight matrix must be [frame_size, frame_size * 3].");
    PADDLE_ENFORCE_EQ(
        weight_width, frame_size * 3,
        "The shape of Weight matrix must be [frame_size, frame_size * 3].");
185
    if (ctx->HasInput("H0")) {
G
guosheng 已提交
186 187 188 189 190 191 192
      auto h0_dims = ctx->GetInputDim("H0");
      PADDLE_ENFORCE_EQ(h0_dims[1], frame_size,
                        "The width of H0 must be equal to frame_size.");
      auto h0_grad_name = framework::GradVarName("H0");
      if (ctx->HasOutput(h0_grad_name))
        ctx->SetOutputDim(h0_grad_name, h0_dims);
    }
193
    if (ctx->HasInput("Bias")) {
G
guosheng 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
      auto bias_dims = ctx->GetInputDim("Bias");
      int bias_height = bias_dims[0];
      int bias_width = bias_dims[1];
      PADDLE_ENFORCE_EQ(bias_height, 1,
                        "The shape of Bias must be [1, frame_size * 3].");
      PADDLE_ENFORCE_EQ(bias_width, frame_size * 3,
                        "The shape of Bias must be [1, frame_size * 3].");
      auto bias_grad_name = framework::GradVarName("Bias");
      if (ctx->HasOutput(bias_grad_name))
        ctx->SetOutputDim(bias_grad_name, bias_dims);
    }
    auto input_grad_name = framework::GradVarName("Input");
    if (ctx->HasOutput(input_grad_name))
      ctx->SetOutputDim(input_grad_name, input_dims);
    auto weight_grad_name = framework::GradVarName("Weight");
    if (ctx->HasOutput(weight_grad_name))
      ctx->SetOutputDim(weight_grad_name, weight_dims);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(gru, ops::GRUOp, ops::GRUOpMaker, gru_grad, ops::GRUGradOp);
Q
QI JUN 已提交
219 220 221 222 223 224
REGISTER_OP_CPU_KERNEL(
    gru, ops::GRUKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GRUKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    gru_grad, ops::GRUGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GRUGradKernel<paddle::platform::CPUDeviceContext, double>);