shrink_rnn_memory_op.cc 6.7 KB
Newer Older
L
Luo Tao 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Y
Yang Yu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yang Yu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yang Yu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yu 已提交
14 15 16 17 18 19 20
#include "paddle/framework/lod_rank_table.h"
#include "paddle/operators/array_operator.h"
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {

Y
Yang Yu 已提交
21
class ShrinkRNNMemoryOp : public ArrayOp {
Y
Yang Yu 已提交
22
 public:
Y
Yang Yu 已提交
23 24 25 26
  ShrinkRNNMemoryOp(const std::string &type,
                    const framework::VariableNameMap &inputs,
                    const framework::VariableNameMap &outputs,
                    const framework::AttributeMap &attrs)
Y
Yang Yu 已提交
27 28 29
      : ArrayOp(type, inputs, outputs, attrs) {}

  void Run(const framework::Scope &scope,
D
dzhwinter 已提交
30
           const platform::Place &place) const override {
Y
Yang Yu 已提交
31 32 33
    auto *x_var = scope.FindVar(Input("X"));
    PADDLE_ENFORCE(x_var != nullptr, "Input X must be set");
    auto &x_tensor = x_var->Get<framework::LoDTensor>();
D
dzhwinter 已提交
34
    size_t offset = this->GetOffset(scope, place);
Y
Yang Yu 已提交
35 36 37 38
    auto *rank_table_var = scope.FindVar(Input("RankTable"));
    PADDLE_ENFORCE(rank_table_var != nullptr, "RankTable must be set");
    auto &rank_table = rank_table_var->Get<framework::LoDRankTable>();

Y
Yang Yu 已提交
39 40 41 42 43 44
    auto &rank_items = rank_table.items();
    int dst_num_rows =
        std::lower_bound(rank_items.begin(), rank_items.end(), offset,
                         [](const framework::LoDRankTable::TableItem &a,
                            size_t b) { return a.length > b; }) -
        rank_items.begin();
Y
Yang Yu 已提交
45 46 47 48 49 50 51 52 53 54

    auto *out_var = scope.FindVar(Output("Out"));
    PADDLE_ENFORCE(out_var != nullptr, "Output Out must be set");
    auto &out_tensor = *out_var->GetMutable<framework::LoDTensor>();
    if (dst_num_rows != 0) {
      out_tensor.ShareDataWith(x_tensor.Slice(0, dst_num_rows));
    }
  }
};

Y
Yang Yu 已提交
55
class ShrinkRNNMemoryOpProtoMaker : public framework::OpProtoAndCheckerMaker {
Y
Yang Yu 已提交
56
 public:
57
  ShrinkRNNMemoryOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yang Yu 已提交
58
      : OpProtoAndCheckerMaker(proto, op_checker) {
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    AddInput("X", "(LoDTensor) The RNN step memory to be shrinked.");
    AddInput("RankTable", "(LoDRankTable) The lod_rank_table of dynamic RNN.");
    AddInput("I",
             "(LoDTensor) The step index. The RNN step memory 'X' will be "
             "shrinked to match the size of the input of the index'th step.");
    AddOutput("Out", "(LoDTensor) The shrinked RNN step memory.");
    AddComment(
        R"DOC(
        In dynamic RNN, we are able to handle sequences of different lengths. 
        Because of the multiple lengths, the size of each step input can be 
        different, which may lead to a mismatching between the input of
        the current step and the memory generated by the previous one. This 
        operator shrinks memory according to the size of the next step input, 
        to make sure that they can match each other.
        )DOC");
Y
Yang Yu 已提交
74 75 76
  }
};

Y
Yang Yu 已提交
77
class ShrinkRNNMemoryInferShape : public framework::InferShapeBase {
Y
Yang Yu 已提交
78 79 80 81 82 83 84 85 86
 public:
  void operator()(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE(context->HasInput("X"));
    PADDLE_ENFORCE(context->HasInput("I"));
    PADDLE_ENFORCE(context->HasInput("RankTable"));
    context->SetOutputDim("Out", context->GetInputDim("X"));
  }
};

Y
Yang Yu 已提交
87
class ShrinkRNNMemoryGradOp : public ArrayOp {
Y
Yang Yu 已提交
88
 public:
Y
Yang Yu 已提交
89 90 91 92
  ShrinkRNNMemoryGradOp(const std::string &type,
                        const framework::VariableNameMap &inputs,
                        const framework::VariableNameMap &outputs,
                        const framework::AttributeMap &attrs)
Y
Yang Yu 已提交
93 94 95
      : ArrayOp(type, inputs, outputs, attrs) {}

  void Run(const framework::Scope &scope,
D
dzhwinter 已提交
96
           const platform::Place &place) const override {
Y
Yang Yu 已提交
97
    auto *dout_var = scope.FindVar(Input(framework::GradVarName("Out")));
Y
Yang Yu 已提交
98
    auto *dx_var = scope.FindVar(Output(framework::GradVarName("X")));
Y
Yang Yu 已提交
99 100 101 102 103 104 105 106 107
    PADDLE_ENFORCE(dx_var != nullptr, "Input Gradient should not be nullptr");
    auto *x_var = scope.FindVar(Input("X"));
    PADDLE_ENFORCE(x_var != nullptr);

    auto &x_tensor = x_var->Get<framework::LoDTensor>();
    auto &dx_tensor = *dx_var->GetMutable<framework::LoDTensor>();
    dx_tensor.Resize(x_tensor.dims());
    dx_tensor.mutable_data(x_tensor.place(), x_tensor.type());

D
dzhwinter 已提交
108
    // get device context from pool
Y
Yang Yu 已提交
109 110
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(place);
D
dzhwinter 已提交
111

Y
Yang Yu 已提交
112 113 114 115 116
    if (dout_var == nullptr) {  // dx_tensor fill zero
      math::set_constant(dev_ctx, &dx_tensor, 0.0f);
    } else {
      auto &dout_tensor = dout_var->Get<framework::LoDTensor>();
      auto height = dout_tensor.dims()[0];
D
dzhwinter 已提交
117 118
      auto slice = dx_tensor.Slice(0, static_cast<int>(height));
      framework::CopyFrom(dout_tensor, dout_tensor.place(), dev_ctx, &slice);
Y
Refine  
Yang Yu 已提交
119 120
      VLOG(10) << dx_tensor.dims()[0] << ", " << height;
      if (dx_tensor.dims()[0] > height) {
Y
Yang Yu 已提交
121
        auto rest_tensor = dx_tensor.Slice(
Y
Refine  
Yang Yu 已提交
122
            static_cast<int>(height), static_cast<int>(dx_tensor.dims()[0]));
Y
Yang Yu 已提交
123 124 125 126 127 128
        math::set_constant(dev_ctx, &rest_tensor, 0.0f);
      }
    }
  }
};

Y
Yang Yu 已提交
129
class ShrinkRNNMemoryGradInferShape : public framework::InferShapeBase {
Y
Yang Yu 已提交
130 131 132 133 134 135 136 137 138
 public:
  void operator()(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE(context->HasInput("X"));
    PADDLE_ENFORCE(context->HasOutput(framework::GradVarName("X")));
    context->SetOutputDim(framework::GradVarName("X"),
                          context->GetInputDim("X"));
  }
};

Y
Yang Yu 已提交
139
class ShrinkRNNGradOpMaker : public framework::SingleGradOpDescMaker {
Y
Yang Yu 已提交
140 141 142 143
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
144 145
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *op = new framework::OpDesc();
Y
Yang Yu 已提交
146
    op->SetType("shrink_rnn_memory_grad");
Y
Yang Yu 已提交
147 148 149 150
    op->SetInput("X", Input("X"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetAttrMap(Attrs());
Y
Yu Yang 已提交
151
    return std::unique_ptr<framework::OpDesc>(op);
Y
Yang Yu 已提交
152 153 154 155 156 157 158
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yu 已提交
159 160 161 162 163
REGISTER_OPERATOR(shrink_rnn_memory, ops::ShrinkRNNMemoryOp,
                  ops::ShrinkRNNMemoryInferShape,
                  ops::ShrinkRNNMemoryOpProtoMaker, ops::ShrinkRNNGradOpMaker);
REGISTER_OPERATOR(shrink_rnn_memory_grad, ops::ShrinkRNNMemoryGradOp,
                  ops::ShrinkRNNMemoryGradInferShape);