test_recognize_digits.py 9.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Y
Yang Yu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import argparse
16
import paddle.fluid as fluid
Y
Yang Yu 已提交
17 18
import paddle.v2 as paddle
import sys
Y
Yang Yu 已提交
19
import numpy
20
import unittest
21 22
import math
import sys
武毅 已提交
23
import os
Y
Yang Yu 已提交
24 25 26 27 28 29 30

BATCH_SIZE = 64


def loss_net(hidden, label):
    prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
Y
Yu Yang 已提交
31
    avg_loss = fluid.layers.mean(loss)
L
Liu Yiqun 已提交
32 33
    acc = fluid.layers.accuracy(input=prediction, label=label)
    return prediction, avg_loss, acc
Y
Yang Yu 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49


def mlp(img, label):
    hidden = fluid.layers.fc(input=img, size=200, act='tanh')
    hidden = fluid.layers.fc(input=hidden, size=200, act='tanh')
    return loss_net(hidden, label)


def conv_net(img, label):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=img,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu")
Y
Yang Yang(Tony) 已提交
50
    conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
Y
Yang Yu 已提交
51 52 53 54 55 56 57 58 59 60
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu")
    return loss_net(conv_pool_2, label)


61 62 63 64 65
def train(nn_type,
          use_cuda,
          parallel,
          save_dirname=None,
          model_filename=None,
武毅 已提交
66 67
          params_filename=None,
          is_local=True):
68 69
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
Y
Yang Yu 已提交
70 71 72
    img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

73
    if nn_type == 'mlp':
Y
Yang Yu 已提交
74 75 76 77
        net_conf = mlp
    else:
        net_conf = conv_net

78
    if parallel:
Y
Yang Yu 已提交
79 80 81 82 83
        places = fluid.layers.get_places()
        pd = fluid.layers.ParallelDo(places)
        with pd.do():
            img_ = pd.read_input(img)
            label_ = pd.read_input(label)
L
Liu Yiqun 已提交
84 85
            prediction, avg_loss, acc = net_conf(img_, label_)
            for o in [avg_loss, acc]:
Y
Yang Yu 已提交
86 87 88 89
                pd.write_output(o)

        avg_loss, acc = pd()
        # get mean loss and acc through every devices.
Y
Yu Yang 已提交
90 91
        avg_loss = fluid.layers.mean(avg_loss)
        acc = fluid.layers.mean(acc)
Y
Yang Yu 已提交
92
    else:
L
Liu Yiqun 已提交
93
        prediction, avg_loss, acc = net_conf(img, label)
Y
Yang Yu 已提交
94

95
    test_program = fluid.default_main_program().clone(for_test=True)
Y
Yang Yu 已提交
96

Y
Yang Yu 已提交
97
    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
武毅 已提交
98
    optimize_ops, params_grads = optimizer.minimize(avg_loss)
Y
Yang Yu 已提交
99

100
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
Y
Yang Yu 已提交
101 102 103 104 105 106 107

    exe = fluid.Executor(place)

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=500),
        batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
108 109
    test_reader = paddle.batch(
        paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
110 111
    feeder = fluid.DataFeeder(feed_list=[img, label], place=place)

武毅 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())

        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                # train a mini-batch, fetch nothing
                exe.run(main_program, feed=feeder.feed(data))
                if (batch_id + 1) % 10 == 0:
                    acc_set = []
                    avg_loss_set = []
                    for test_data in test_reader():
                        acc_np, avg_loss_np = exe.run(
                            program=test_program,
                            feed=feeder.feed(test_data),
                            fetch_list=[acc, avg_loss])
                        acc_set.append(float(acc_np))
                        avg_loss_set.append(float(avg_loss_np))
                    # get test acc and loss
                    acc_val = numpy.array(acc_set).mean()
                    avg_loss_val = numpy.array(avg_loss_set).mean()
                    if float(acc_val
                             ) > 0.2:  # Smaller value to increase CI speed
                        if save_dirname is not None:
                            fluid.io.save_inference_model(
                                save_dirname, ["img"], [prediction],
                                exe,
                                model_filename=model_filename,
                                params_filename=params_filename)
                        return
                    else:
                        print(
                            'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
                            format(pass_id, batch_id + 1,
                                   float(avg_loss_val), float(acc_val)))
                        if math.isnan(float(avg_loss_val)):
                            sys.exit("got NaN loss, training failed.")
        raise AssertionError("Loss of recognize digits is too large")

    if is_local:
        train_loop(fluid.default_main_program())
    else:
        port = os.getenv("PADDLE_INIT_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_INIT_PSERVERS")  # ip,ip...
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
        pserver_endpoints = os.getenv("PSERVERS")
        trainers = int(os.getenv("TRAINERS"))
        current_endpoint = os.getenv("POD_IP") + ":" + port
        trainer_id = int(os.getenv("PADDLE_INIT_TRAINER_ID"))
        training_role = os.getenv("TRAINING_ROLE", "TRAINER")
        t = fluid.DistributeTranspiler()
        t.transpile(
            optimize_ops,
            params_grads,
            trainer_id,
            pservers=pserver_endpoints,
            trainers=trainers)
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Y
Yang Yu 已提交
180 181


182 183 184 185
def infer(use_cuda,
          save_dirname=None,
          model_filename=None,
          params_filename=None):
L
Liu Yiqun 已提交
186 187 188
    if save_dirname is None:
        return

189
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
L
Liu Yiqun 已提交
190 191
    exe = fluid.Executor(place)

192 193 194 195 196 197
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
198 199 200
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(
             save_dirname, exe, model_filename, params_filename)
201 202 203 204 205 206 207 208 209 210 211 212 213

        # The input's dimension of conv should be 4-D or 5-D.
        # Use normilized image pixels as input data, which should be in the range [-1.0, 1.0].
        batch_size = 1
        tensor_img = numpy.random.uniform(
            -1.0, 1.0, [batch_size, 1, 28, 28]).astype("float32")

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)
        print("infer results: ", results[0])
L
Liu Yiqun 已提交
214 215


216
def main(use_cuda, parallel, nn_type, combine):
217 218 219
    save_dirname = None
    model_filename = None
    params_filename = None
220 221
    if not use_cuda and not parallel:
        save_dirname = "recognize_digits_" + nn_type + ".inference.model"
222
        if combine == True:
223 224
            model_filename = "__model_combined__"
            params_filename = "__params_combined__"
225

武毅 已提交
226
    # call train() with is_local argument to run distributed train
227 228 229 230
    train(
        nn_type=nn_type,
        use_cuda=use_cuda,
        parallel=parallel,
231
        save_dirname=save_dirname,
232 233
        model_filename=model_filename,
        params_filename=params_filename)
234 235 236
    infer(
        use_cuda=use_cuda,
        save_dirname=save_dirname,
237 238
        model_filename=model_filename,
        params_filename=params_filename)
239 240 241 242 243 244


class TestRecognizeDigits(unittest.TestCase):
    pass


245
def inject_test_method(use_cuda, parallel, nn_type, combine):
246 247 248 249 250 251
    def __impl__(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
252
                main(use_cuda, parallel, nn_type, combine)
253

254 255 256 257
    fn = 'test_{0}_{1}_{2}_{3}'.format(nn_type, 'cuda'
                                       if use_cuda else 'cpu', 'parallel'
                                       if parallel else 'normal', 'combine'
                                       if combine else 'separate')
258 259 260 261 262 263 264 265

    setattr(TestRecognizeDigits, fn, __impl__)


def inject_all_tests():
    for use_cuda in (False, True):
        for parallel in (False, True):
            for nn_type in ('mlp', 'conv'):
266 267
                inject_test_method(use_cuda, parallel, nn_type, True)

268
    # Two unit-test for saving parameters as separate files
269
    inject_test_method(False, False, 'mlp', False)
270
    inject_test_method(False, False, 'conv', False)
271 272 273 274 275 276


inject_all_tests()

if __name__ == '__main__':
    unittest.main()