distribute_transpiler.py 68.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
W
Wu Yi 已提交
34
import sys
35
import numpy as np
36
import collections
37

38
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
39
from .. import core, framework
T
typhoonzero 已提交
40
from ..framework import Program, default_main_program, \
Q
Qiyang Min 已提交
41
                        default_startup_program, Block, \
W
Wu Yi 已提交
42
                        Parameter, grad_var_name
43 44
from .details import *
from functools import reduce
45 46 47

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
48
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
49 50 51
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
52 53


T
typhoonzero 已提交
54 55 56 57 58 59
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
60

T
typhoonzero 已提交
61 62
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
63 64


65 66 67 68
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
69
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
70
    """
71 72 73 74 75 76
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
77
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
78 79 80

    Args:
        var_list (list): List of variables.
81 82
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
83 84
        min_block_size (int): Minimum splitted block size.
    Returns:
85
        blocks (list[(varname, block_id, current_block_size)]): A list
86
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
87 88 89
    """
    blocks = []
    for var in var_list:
90
        split_count = slice_count
T
typhoonzero 已提交
91 92 93 94
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
95
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
96 97 98 99 100 101 102 103 104
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
105
        # update split_count after aligning
T
typhoonzero 已提交
106
        split_count = int(math.ceil(var_numel / float(block_size)))
107
        for block_id in range(split_count):
T
typhoonzero 已提交
108 109 110 111 112 113 114
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
115 116 117 118 119 120 121
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
122
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
123 124 125 126 127 128 129 130
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192


Y
gen rst  
yi.wu 已提交
131
class DistributeTranspiler(object):
Y
yi.wu 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.

    The main_program will be transformed to use a remote parameter server
    to do parameter optimization. And the optimization graph will be put
    into a parameter server program.

    Examples:
        .. code-block:: python

           # Define your model before these codes.
           port = os.getenv("PADDLE_PSERVER_PORT", "6174")
           pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
           eplist = []
           for ip in pserver_ips.split(","):
                eplist.append(':'.join([ip, port]))
           pserver_endpoints = ",".join(eplist)
           trainers = int(os.getenv("PADDLE_TRAINERS"))
           current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
           trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
           role = os.getenv("PADDLE_TRAINING_ROLE")

           t = distribute_transpiler.DistributeTranspiler()
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
    """
Y
Yancey1989 已提交
166

G
gongweibao 已提交
167 168 169 170 171 172 173 174 175 176 177 178
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

179 180 181 182 183
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
184 185
                  sync_mode=True,
                  startup_program=None):
186
        """
Y
yi.wu 已提交
187 188 189 190 191 192 193 194 195 196 197
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
            trainers (int): number of trainers in the distributed job.
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
198 199
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
200 201 202
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
203 204
        if startup_program is None:
            startup_program = default_startup_program()
205
        self.origin_program = program
W
Wu Yi 已提交
206 207
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
208

209 210 211 212 213 214 215
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
216
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
217
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()
218
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
219
        self.grad_name_to_param_name = dict()
220 221
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
222
            self.grad_name_to_param_name[grad_var.name] = param_var.name
223

G
gongweibao 已提交
224
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
225
        self._init_splited_vars()
226

G
gongweibao 已提交
227
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
228
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
229
        send_vars = []
230 231 232 233 234 235

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
236
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
237

G
gongweibao 已提交
238
        if not self.config.slice_var_up:
239
            random.seed(self.origin_program.random_seed)
S
seiriosPlus 已提交
240
            random.shuffle(grad_var_mapping_items)
241

242 243
        grad_name_to_send_dummy_out = dict()
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
244
            eplist = ps_dispatcher.dispatch(splited_vars)
245

G
gongweibao 已提交
246
            if not self.config.slice_var_up:
247 248
                assert (len(splited_vars) == 1)

249
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
250
            if len(splited_vars) == 1:
251
                splited_grad_varname = splited_vars[0].name
Y
Yancey1989 已提交
252
                index = find_op_by_output_arg(program.global_block(),
253
                                              splited_grad_varname)
Y
Yancey1989 已提交
254
            elif len(splited_vars) > 1:
255
                orig_var = program.global_block().vars[splited_grad_varname]
Y
Yancey1989 已提交
256
                index = find_op_by_output_arg(program.global_block(),
257
                                              splited_grad_varname)
Y
Yancey1989 已提交
258
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
259
                index += 1
Y
Yancey1989 已提交
260 261
            else:
                AssertionError("Can not insert the send op by original "
262
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
263

W
Wu Yi 已提交
264 265
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
266
            grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
267

W
Wu Yi 已提交
268
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
269
                index=index + 1,
270
                type="send",
Y
update  
Yancey1989 已提交
271
                inputs={"X": splited_vars},
272
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
273 274
                attrs={
                    "epmap": eplist,
275
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
276 277
                    OP_ROLE_VAR_ATTR_NAME:
                    [self.grad_name_to_param_name[grad_varname], grad_varname],
278
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
279
                })
Y
update  
Yancey1989 已提交
280 281
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
282 283

        if self.sync_mode:
W
Wu Yi 已提交
284 285 286
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
            input_deps = grad_name_to_send_dummy_out.values()
Y
Yancey1989 已提交
287 288
            program.global_block().append_op(
                type="send_barrier",
W
Wu Yi 已提交
289 290
                inputs={"X": input_deps},
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
291 292
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
293
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
294
                })
Y
Yancey1989 已提交
295

G
gongweibao 已提交
296
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
297
        recv_vars = []
Y
update  
Yancey1989 已提交
298
        for _, var in enumerate(send_vars):
299
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
300
        ps_dispatcher.reset()
Y
Yancey1989 已提交
301 302
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
303
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
304 305
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
306

Y
Yancey1989 已提交
307
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
308
        all_recv_outputs = []
309
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
310 311 312 313
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
W
Wu Yi 已提交
314 315 316 317 318 319 320
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
                recv_dep_in = grad_name_to_send_dummy_out[
                    self.param_name_to_grad_name[param_varname]]
            all_recv_outputs.extend(splited_var)
Y
Yancey1989 已提交
321 322
            program.global_block().append_op(
                type="recv",
W
Wu Yi 已提交
323
                inputs={"X": [recv_dep_in]},
Y
Yancey1989 已提交
324 325 326
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
327
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
328 329 330 331
                    OP_ROLE_VAR_ATTR_NAME: [
                        param_varname,
                        self.param_name_to_grad_name[param_varname]
                    ],
332
                    "sync_mode": not self.sync_mode
Y
Yancey1989 已提交
333
                })
T
typhoonzero 已提交
334

Q
qiaolongfei 已提交
335
        if self.sync_mode:
W
Wu Yi 已提交
336
            # form a WAW dependency
Q
qiaolongfei 已提交
337 338 339
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
340
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
341 342 343 344
                attrs={
                    "endpoints": pserver_endpoints,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
345

346
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
347 348
            if len(splited_var) <= 1:
                continue
349
            orig_param = program.global_block().vars[param_varname]
T
typhoonzero 已提交
350
            program.global_block().append_op(
T
typhoonzero 已提交
351
                type="concat",
T
typhoonzero 已提交
352
                inputs={"X": splited_var},
T
typhoonzero 已提交
353
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
354
                attrs={"axis": 0})
T
typhoonzero 已提交
355

G
gongweibao 已提交
356 357
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

358
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
359 360
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
361
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
362

T
typhoonzero 已提交
363
    def get_trainer_program(self):
Y
yi.wu 已提交
364 365 366 367 368 369
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
370
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
371
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
372
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
373
        self.origin_program.__str__()
G
gongweibao 已提交
374

375
        return self.origin_program
T
typhoonzero 已提交
376

W
Wu Yi 已提交
377
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
378 379 380 381
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
382 383
            recv_vars (list): Variable list to recv for current trainer_id
            eplist (list): A list of strings indicating 
G
gongweibao 已提交
384 385 386 387

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
388
        startup_program = self.startup_program
G
gongweibao 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

        for varname, splited_var in self.param_var_mapping.iteritems():
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
414
                inputs={"X": []},
G
gongweibao 已提交
415 416 417 418 419 420
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
421 422
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
423 424 425
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
426
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
427 428 429 430 431 432 433 434 435
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        for varname, splited_var in self.param_var_mapping.iteritems():
            #add concat ops to merge splited parameters received from parameter servers.
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
436 437 438 439 440 441 442 443 444 445 446 447
            # NOTE: if enable memory optimization, origin vars maybe removed.
            if startup_program.global_block().vars.has_key(varname):
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
448 449 450 451 452 453 454 455
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
456 457
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
458
        Get parameter server side program.
459

Y
yi.wu 已提交
460 461
        Args:
            endpoint (str): current parameter server endpoint.
462

Y
yi.wu 已提交
463 464
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
465
        """
Y
yi.wu 已提交
466 467 468 469
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
W
Wu Yi 已提交
470 471 472
        sys.stderr.write("get_pserver_program() is deprecated, call\
            get_pserver_programs() to get pserver main and startup\
            in a single call.")
T
typhoonzero 已提交
473 474
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
475
        pserver_program.random_seed = self.origin_program.random_seed
476
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
477 478 479 480 481 482 483 484
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
485 486 487 488 489
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
490 491 492 493 494 495 496 497 498
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
499
            if self.sync_mode and self.trainer_num > 1:
500
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
501 502 503 504 505 506 507 508 509
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
510

Q
qiaolongfei 已提交
511
        # step 3
512
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
513 514 515
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
516
        # step 3.2
T
typhoonzero 已提交
517 518 519 520
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
521 522
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
523
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
524
        # step 3.3
T
typhoonzero 已提交
525
        # Iterate through the ops, and if an op and the optimize ops
526
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
527
        # append it into the sub program.
T
typhoonzero 已提交
528 529 530

        global_ops = []

Y
wip  
yi.wu 已提交
531 532
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
533
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
534
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
535
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
536
            elif op not in lr_ops:
Q
Qiyang Min 已提交
537
                self._append_pserver_non_opt_ops(block, op)
538 539 540 541 542 543

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
544

Y
Yancey1989 已提交
545
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
546 547 548 549 550 551 552 553
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
Y
Yancey1989 已提交
554
            new_sub_block = program.create_block(lr_block.idx)
Q
Qiyang Min 已提交
555 556 557

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
558
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
559 560

            # clone ops
Y
Yancey1989 已提交
561 562
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
563
                # clone sub_block of op
Y
Yancey1989 已提交
564
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
565 566 567 568

            # reset the block of op
            op.set_attr('sub_block', new_sub_block)

569
        # append lr decay ops to the child block if exists
570
        lr_ops = self._get_lr_ops()
571 572
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
573
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
574 575
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
576
            optimize_blocks.append(lr_decay_block)
577
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
578
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
579
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
580 581
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
582

T
typhoonzero 已提交
583
        # append op to the current block
Q
qiaolongfei 已提交
584
        grad_to_block_id = []
Q
qiaolongfei 已提交
585
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
586
        for idx, opt_op in enumerate(opt_op_on_pserver):
587
            per_opt_block = pserver_program.create_block(pre_block_idx)
588
            optimize_blocks.append(per_opt_block)
589
            # append grad merging ops before clip and weight decay
590
            # cases may like:
T
typhoonzero 已提交
591
            # L2Decay op -> clip op -> optimize
592 593 594 595 596 597 598
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
599
                    break  # append optimize op once then append other ops.
T
typhoonzero 已提交
600 601
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
602
                if ufind.is_connected(op, opt_op) and op not in global_ops:
603
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
Y
wip  
yi.wu 已提交
604
                                           merged_var, lr_ops)
T
typhoonzero 已提交
605

W
Wu Yi 已提交
606 607
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
608
        # append global ops
609
        if global_ops:
Q
qiaolongfei 已提交
610 611
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
612
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
613
            for glb_op in global_ops:
X
Xi Chen 已提交
614
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
615
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
616

617
        # process distributed lookup_table
Q
qiaolongfei 已提交
618
        prefetch_var_name_to_block_id = []
619 620
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
621
            table_opt_block = self._create_table_optimize_block(
622
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
623
            optimize_blocks.append(table_opt_block)
Q
qiaolongfei 已提交
624
            prefetch_var_name_to_block_id = self._create_prefetch_block(
625
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
626 627
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
628 629 630 631

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
Q
qiaolongfei 已提交
632
            assert len(prefetch_var_name_to_block_id) > 0
633
        else:
Q
qiaolongfei 已提交
634
            assert len(prefetch_var_name_to_block_id) == 0
635

636
        attrs = {
637
            "optimize_blocks": optimize_blocks,
638 639 640
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
641
            "grad_to_block_id": grad_to_block_id,
642 643 644 645
        }
        if len(prefetch_var_name_to_block_id) > 0:
            attrs['prefetch_var_name_to_block_id'] \
                = prefetch_var_name_to_block_id
T
tangwei12 已提交
646
            attrs['checkpint_block_id'] = checkpoint_block_id
647

T
typhoonzero 已提交
648 649 650 651 652
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
653
            attrs=attrs)
654

W
Wu Yi 已提交
655
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
656 657
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
658 659
        return pserver_program

W
Wu Yi 已提交
660 661 662 663 664 665 666 667 668 669 670 671 672 673
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
        
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
        pserver_startup = self.get_startup_program(endpoint)
        return pserver_prog, pserver_startup

674 675
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
676
                            pserver_program=None,
677
                            startup_program=None):
T
typhoonzero 已提交
678
        """
W
Wu Yi 已提交
679 680
        **Deprecated**

T
typhoonzero 已提交
681 682 683
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
684 685 686

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
687 688 689
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
                when initalizing 
690

Y
yi.wu 已提交
691 692
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
693
        """
W
Wu Yi 已提交
694 695 696 697 698 699 700 701 702 703 704 705
        sys.stderr.write("get_startup_program() is deprecated, call\
            get_pserver_programs() to get pserver main and startup\
            in a single call.")
        if pserver_program != None:
            sys.stderr.write("passing pserver_program to get_startup_program()\
                is deprecated, you can use new API get_pserver_programs() to\
                get both pserver main program and startup program.")
        if startup_program != None:
            sys.stderr.write("passing startup_program to get_startup_program()\
                is deprecated, use fluid.program_guard() or pass this argument\
                to transpile() call.")

T
typhoonzero 已提交
706
        s_prog = Program()
W
Wu Yi 已提交
707
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
708
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
709 710 711 712 713 714 715 716 717 718 719
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
720
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
721
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
722
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
723 724 725 726
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
727
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
728 729
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
730 731 732 733 734 735 736 737 738 739
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
740 741

            if op_on_pserver:
742 743 744
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
745 746 747
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
G
gongweibao 已提交
748
                    op.set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
749 750 751 752
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
753
                    attrs=op.all_attrs())
T
typhoonzero 已提交
754 755
        return s_prog

756 757
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
758 759 760 761 762 763 764 765 766
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
G
gongweibao 已提交
767
                if op.attr('is_distributed') is True:
Y
yi.wu 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
819
    def _init_splited_vars(self):
Y
yi.wu 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
843
        if self.config.slice_var_up:
Y
yi.wu 已提交
844 845
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
846 847 848
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
849
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
850 851
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
852 853 854
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
855 856 857 858
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
859 860
        assert (len(grad_blocks) == len(param_blocks))

861
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
862 863
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
864
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
865 866 867 868
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
869
        # dict(grad_splited_var -> param_splited_var)
870
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
871 872 873 874
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
875
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
876 877

        # create mapping of endpoint -> split var to create pserver side program
878
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
879 880 881 882 883 884 885 886 887
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

888
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
889 890
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
891
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
892 893 894 895 896 897 898 899 900
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
901 902 903 904 905 906 907 908 909

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

910
                    lookup_table_op_index = list(all_ops).index(op)
911 912 913
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
914
                    ids_var = program.global_block().vars[ids_name[0]]
W
Wu Yi 已提交
915
                    prefetch_input_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
916 917 918 919 920 921
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
W
Wu Yi 已提交
922
                    prefetch_output_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
923 924 925 926
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
927 928

                    # insert split_ids_op
W
Wu Yi 已提交
929
                    program.global_block()._insert_op(
930
                        index=lookup_table_op_index,
931 932 933 934 935 936 937
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
938
                        outputs={"Out": prefetch_input_vars})
939 940

                    # insert prefetch_op
W
Wu Yi 已提交
941
                    program.global_block()._insert_op(
942
                        index=lookup_table_op_index + 1,
943
                        type="prefetch",
Q
qiaolongfei 已提交
944 945
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
946
                        attrs={
947
                            "epmap": pserver_endpoints,
948 949 950
                            # FIXME(qiao) temporarily disable this config because prefetch
                            # is not act as other rpc op, it's more like a forward op
                            # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
951
                        })
952 953

                    # insert concat_op
W
Wu Yi 已提交
954
                    program.global_block()._insert_op(
955 956 957 958 959 960 961
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
962
                            'X': prefetch_output_vars
963
                        },
964 965 966 967 968
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
969
                        })
970 971

                    # delete lookup_table_op
972
                    delete_ops(program.global_block(), [op])
973 974 975
                    # break for loop
                    break

Y
Yancey1989 已提交
976
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
977
        # 2. add split_ids_op and send_op to send gradient to pservers
978 979
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
980
        table_grad_name = grad_var_name(self.table_name)
981 982 983 984
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
985
                program.global_block()._insert_op(
986 987 988 989 990
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
991
                    outputs={"Out": self.trainer_side_table_grad_list})
W
Wu Yi 已提交
992
                program.global_block()._insert_op(
993
                    index=op_index + 2,
994
                    type="send",
995
                    inputs={'X': self.trainer_side_table_grad_list},
996
                    outputs={'Out': []},
Y
Yancey1989 已提交
997
                    attrs={
998
                        "sync_mode": True,
Y
Yancey1989 已提交
999
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1000 1001 1002 1003 1004
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1005
                    })
1006 1007 1008 1009 1010 1011
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
            prefetch_block = pserver_program.create_block(optimize_block.idx)
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
1040 1041

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1042
                                     pre_block_idx, grad_to_block_id):
1043 1044
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
1045 1046
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1047

T
tangwei12 已提交
1048
        zero_dim = int(
T
tangwei12 已提交
1049 1050 1051 1052
            math.ceil(origin_param_var.shape[0] / len(self.pserver_endpoints)))
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1053 1054
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1055
            shape=table_shape,
Y
Yancey1989 已提交
1056 1057 1058
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1059 1060
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1061
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1062
            self.origin_program.global_block().vars[grad_var_name(
1063
                self.table_name)])
1064 1065 1066 1067

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
1068 1069
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1070
        ][0]
Q
qiaolongfei 已提交
1071
        table_opt_block = pserver_program.create_block(pre_block_idx)
1072

1073 1074 1075
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1076
            pserver_side_table_grad_list = [
1077 1078 1079 1080 1081 1082 1083 1084 1085
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1086
            # append sum op for pserver_side_table_grad_list
1087 1088
            table_opt_block.append_op(
                type="sum",
1089
                inputs={"X": pserver_side_table_grad_list},
1090 1091
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1092 1093
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1094
            origin_grad_name = grad_var.name
1095 1096
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1097 1098
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1099
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1100
            grad_var = pserver_program.global_block()._rename_var(
1101
                origin_grad_name, splited_grad_name)
1102 1103 1104 1105 1106 1107 1108 1109 1110

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1111
        # only support sgd now
1112 1113 1114 1115
        import logging
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1116
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1117

1118 1119 1120
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1121 1122
        return table_opt_block

T
tangwei12 已提交
1123 1124 1125 1126 1127 1128
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
1129
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1130
            name="kLookupTablePath",
T
tangwei12 已提交
1131 1132
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1133

T
tangwei12 已提交
1134
        checkpoint_save_block = pserver_program.create_block(pre_block_idx)
T
tangwei12 已提交
1135
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1136 1137 1138 1139
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1140
            attrs={'file_path': "none"})
T
tangwei12 已提交
1141 1142 1143

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1144 1145 1146 1147 1148
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1149
        Create vars for each split.
T
typhoonzero 已提交
1150 1151
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1152 1153 1154 1155
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1156
        Returns:
1157
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1158
                from original var name to each var split.
T
typhoonzero 已提交
1159
        """
1160 1161

        # varname->[(block_id, current_block_size)]
1162
        block_map = collections.OrderedDict()
1163

1164
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1165 1166
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1167
            if varname not in block_map:
T
typhoonzero 已提交
1168
                block_map[varname] = []
1169
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1170

M
minqiyang 已提交
1171
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1172
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1173
            if len(splited) == 1:
1174
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1175 1176
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1177
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1178 1179 1180 1181 1182
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1183
                continue
T
typhoonzero 已提交
1184
            var_mapping[varname] = []
T
typhoonzero 已提交
1185 1186 1187 1188
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1189

T
typhoonzero 已提交
1190
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1191
                size = block[1]
M
minqiyang 已提交
1192
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1193 1194 1195
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1196
                new_var_name = ""
1197
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1198 1199 1200 1201 1202
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
1203
                var = program.global_block().create_var(
T
typhoonzero 已提交
1204 1205
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1206
                    dtype=orig_var.dtype,
1207
                    type=orig_var.type,
T
typhoonzero 已提交
1208
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1209
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1210
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1211
        return var_mapping
T
done  
typhoonzero 已提交
1212

W
Wu Yi 已提交
1213
    def _create_splited_vars(self, source_var, block, tag):
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1224 1225 1226 1227 1228 1229
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1230
            persistable=persistable)
T
done  
typhoonzero 已提交
1231

Y
Yancey1989 已提交
1232
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1233 1234 1235 1236
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1237
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1247
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1257

T
typhoonzero 已提交
1258 1259 1260 1261
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1262
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

1285 1286
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1287
        orig_var_name = ""
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1298
        else:
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1326
        else:
1327 1328 1329 1330 1331 1332
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1333
            for i in range(self.trainer_num):
1334 1335 1336 1337 1338 1339 1340
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1341 1342
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
1343 1344 1345 1346 1347 1348 1349 1350
            # TODO(panyx0718): What if it's SELECTED_ROWS.
            if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                optimize_block.append_op(
                    type="scale",
                    inputs={"X": merged_var},
                    outputs={"Out": merged_var},
                    attrs={"scale": 1.0 / float(self.trainer_num)})
        return merged_var
T
typhoonzero 已提交
1351

1352
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1353
                            grad_to_block_id, origin_program, merged_var):
1354
        program = optimize_block.program
T
typhoonzero 已提交
1355
        pserver_block = program.global_block()
1356
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1357

T
typhoonzero 已提交
1358 1359
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
W
Wu Yi 已提交
1360 1361 1362 1363 1364 1365 1366 1367 1368
        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

T
typhoonzero 已提交
1369
        for key in opt_op.input_names:
T
typhoonzero 已提交
1370 1371
            if key == "Grad":
                new_inputs[key] = merged_var
W
Wu Yi 已提交
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
            # For RMSProp optimizer
            elif key == "Moment" or key == "MeanSquare":
                param_block = _get_param_block(opt_op)
                if not param_block:
                    return
                moment_var = origin_program.global_block().vars[opt_op.input(
                    key)[0]]
                tmpvar = pserver_block.create_var(
                    name=moment_var.name,
                    persistable=moment_var.persistable,
                    dtype=moment_var.dtype,
                    # change to use same shape as param
                    # TODO(typhoonzero): didn't append .block in the var name,
                    # may affect checkpoint saving? Need to verify.
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
T
typhoonzero 已提交
1388
            elif key == "Param":
W
Wu Yi 已提交
1389
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1390 1391
                if not param_block:
                    return
T
typhoonzero 已提交
1392
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1393
                    name=param_block.name,
T
typhoonzero 已提交
1394
                    persistable=True,
T
typhoonzero 已提交
1395 1396 1397
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1398
            elif key == "LearningRate":
1399
                # learning rate variable has already be created by non-optimize op,
1400
                # don't create it once again.
1401
                lr_varname = opt_op.input(key)[0]
1402
                if lr_varname in pserver_block.vars:
1403 1404 1405 1406 1407 1408 1409 1410 1411
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1412

T
typhoonzero 已提交
1413
        for key in opt_op.input_names:
1414
            new_shape = None
W
Wu Yi 已提交
1415
            if key in ["Param", "Grad", "LearningRate", "Moment", "MeanSquare"]:
T
typhoonzero 已提交
1416
                continue
1417
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1418 1419 1420 1421
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1422
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1423 1424 1425 1426 1427
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1428

1429
        # change output's ParamOut variable
1430 1431
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1432
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1433

1434
        optimize_block.append_op(
T
typhoonzero 已提交
1435 1436
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1437
            outputs=outputs,
G
gongweibao 已提交
1438
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1439

1440 1441
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
M
minqiyang 已提交
1442
        for _, g in six.iteritems(var_dict):
1443 1444 1445 1446 1447 1448
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1449 1450 1451
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1452
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1453 1454 1455 1456
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1457
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1458 1459 1460

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1461
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1462 1463 1464 1465
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1466
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1467

Y
Yancey1989 已提交
1468
        return block.append_op(
G
gongweibao 已提交
1469
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1470 1471

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1472
        program = optimize_block.program
1473
        # Append the ops for parameters that do not need to be optimized/updated
1474 1475
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1476
        for key, varlist in six.iteritems(inputs):
1477 1478
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1479
            for var in varlist:
1480 1481 1482 1483 1484 1485
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1486
                elif var.name not in program.global_block().vars:
1487
                    program.global_block().create_var(
T
typhoonzero 已提交
1488 1489 1490 1491 1492
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1493 1494
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1495
        for key, varlist in six.iteritems(outputs):
1496 1497 1498
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1499 1500 1501 1502
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1503
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1504
                    program.global_block()._clone_variable(var)
1505

Y
Yancey1989 已提交
1506
        return optimize_block.append_op(
T
typhoonzero 已提交
1507
            type=opt_op.type,
T
typhoonzero 已提交
1508 1509
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1510
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1511

1512 1513 1514 1515
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1516 1517
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
           set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1518 1519 1520 1521 1522 1523
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1524 1525
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1526 1527 1528 1529 1530 1531
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1532
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1533 1534
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1535 1536 1537 1538 1539 1540 1541
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1542
        if op.input("Param")[0] in param_names:
1543 1544 1545
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1546
                param = op.input("Param")[0]
T
typhoonzero 已提交
1547
                if same_or_split_var(n, param) and n != param:
1548 1549 1550
                    return True
            return False

T
typhoonzero 已提交
1551
    def _get_input_map_from_op(self, varmap, op):
1552
        """Returns a dict from op input name to the vars in varmap."""
1553
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1565
        """Returns a dict from op output name to the vars in varmap."""
1566
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1567 1568 1569 1570 1571 1572 1573 1574 1575
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1576 1577 1578 1579 1580 1581

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1582
            if self._is_optimizer_op(op):
1583 1584 1585 1586
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1587
        block = self.origin_program.global_block()
1588 1589 1590 1591 1592
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1593

1594 1595 1596 1597 1598
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1599
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1600 1601 1602 1603 1604 1605
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1606 1607
                    # we only need to append op for once
                    break
1608
        return lr_ops
Y
Yancey1989 已提交
1609

W
Wu Yi 已提交
1610 1611 1612 1613 1614
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1615 1616
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1617 1618 1619
            return True
        return False

Y
Yancey1989 已提交
1620
    def _get_optimize_pass(self):
1621
        """
1622
        Get optimizer operators, parameters and gradients from origin_program
1623 1624 1625 1626
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1627 1628 1629
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1630
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1631
        for op in block.ops:
W
Wu Yi 已提交
1632
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1633
                opt_ops.append(op)
1634 1635 1636 1637 1638
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
G
gongweibao 已提交
1639 1640
                        op.attr(RPC_OP_ROLE_ATTR_NAME):
                        param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1641 1642 1643 1644
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
Y
Yancey1989 已提交
1645 1646 1647
            else:
                pass
        return opt_ops, params_grads