test_multiprocess_dataloader_exception.py 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import os
import sys
import six
import time
import unittest
import multiprocessing
import numpy as np

import paddle.fluid as fluid
26
import paddle.fluid.core as core
27
from paddle.io import Dataset, IterableDataset, BatchSampler, DataLoader
28 29
from paddle.fluid.dygraph.nn import Linear
from paddle.fluid.dygraph.base import to_variable
30
from paddle.fluid.dataloader.dataloader_iter import _worker_loop
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103


class RandomDataset(Dataset):
    def __init__(self, sample_num):
        self.sample_num = sample_num

    def __getitem__(self, idx):
        np.random.seed(idx)
        image = np.random.random([784]).astype('float32')
        label = np.random.randint(0, 9, (1, )).astype('int64')
        return image, label

    def __len__(self):
        return self.sample_num


class TestDataLoaderAssert(unittest.TestCase):
    def test_main(self):
        place = fluid.cpu_places()[0]
        with fluid.dygraph.guard(place):
            dataset = RandomDataset(100)
            batch_sampler = BatchSampler(dataset=dataset, batch_size=4)

            # dataset is not instance of Dataset
            try:
                loader = DataLoader(dataset=batch_sampler, places=place)
                self.assertTrue(False)
            except AssertionError:
                pass

            # places is None
            try:
                loader = DataLoader(dataset=dataset, places=None)
                self.assertTrue(False)
            except AssertionError:
                pass

            # num_workers < 0
            try:
                loader = DataLoader(
                    dataset=dataset, places=place, num_workers=-1)
                self.assertTrue(False)
            except AssertionError:
                pass

            # timeout < 0
            try:
                loader = DataLoader(dataset=dataset, places=place, timeout=-1)
                self.assertTrue(False)
            except AssertionError:
                pass

            # set batch_sampler and shuffle/batch_size/drop_last
            try:
                loader = DataLoader(
                    dataset=dataset,
                    places=place,
                    batch_sampler=batch_sampler,
                    shuffle=True,
                    drop_last=True)
                self.assertTrue(False)
            except AssertionError:
                pass

            # set batch_sampler correctly
            try:
                loader = DataLoader(
                    dataset=dataset, places=place, batch_sampler=batch_sampler)
                self.assertTrue(True)
            except AssertionError:
                self.assertTrue(False)


104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
class TestDatasetRuntimeError(unittest.TestCase):
    def test_main(self):
        dataset = Dataset()

        # __getitem__ not implement
        try:
            d = dataset[0]
            self.assertTrue(False)
        except NotImplementedError:
            pass

        # __len__ not implement
        try:
            l = len(dataset)
            self.assertTrue(False)
        except NotImplementedError:
            pass

        dataset = IterableDataset()

        # __iter__ not implement
        try:
            d = iter(dataset)
            self.assertTrue(False)
        except NotImplementedError:
            pass

        # __getitem__ runtime error
        try:
            d = dataset[0]
            self.assertTrue(False)
        except RuntimeError:
            pass

        # __len__ runtime error
        try:
            l = len(dataset)
            self.assertTrue(False)
        except RuntimeError:
            pass


146 147
# CI Converage cannot record stub in subprocess,
# HACK a _worker_loop in main process call here
148 149
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
class TestDataLoaderWorkerLoop(unittest.TestCase):
    def run_without_worker_done(self, use_shared_memory=True):
        try:
            place = fluid.cpu_places()[0]
            with fluid.dygraph.guard(place):
                dataset = RandomDataset(800)

                # test init_fn
                def _init_fn(worker_id):
                    pass

                # test collate_fn
                def _collate_fn(sample_list):
                    return [
                        np.stack(
                            s, axis=0) for s in list(zip(*sample_list))
                    ]

                loader = DataLoader(
                    dataset,
                    num_workers=1,
                    places=place,
                    use_shared_memory=use_shared_memory)
                assert loader.num_workers > 0, \
                    "go to AssertionError and pass in Mac and Windows"
                loader = iter(loader)
                print("loader length", len(loader))
                indices_queue = multiprocessing.Queue()
                for i in range(10):
                    indices_queue.put([i, i + 10])
                indices_queue.put(None)
181
                base_seed = 1234
182 183
                _worker_loop(loader._dataset, 0, indices_queue,
                             loader._data_queue, loader._workers_done_event,
184
                             True, _collate_fn, True, _init_fn, 0, 1,
185
                             loader._use_shared_memory, base_seed)
186 187 188
                self.assertTrue(False)
        except AssertionError:
            pass
189 190 191 192
        except Exception as e:
            print("Exception", e)
            import sys
            sys.stdout.flush()
193 194 195 196
            self.assertTrue(False)

    def run_with_worker_done(self, use_shared_memory=True):
        try:
197
            place = fluid.CPUPlace()
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
            with fluid.dygraph.guard(place):
                dataset = RandomDataset(800)

                # test init_fn
                def _init_fn(worker_id):
                    pass

                # test collate_fn
                def _collate_fn(sample_list):
                    return [
                        np.stack(
                            s, axis=0) for s in list(zip(*sample_list))
                    ]

                loader = DataLoader(
                    dataset,
                    num_workers=1,
                    places=place,
                    use_shared_memory=use_shared_memory)
                assert loader.num_workers > 0, \
                    "go to AssertionError and pass in Mac and Windows"
                loader = iter(loader)
                print("loader length", len(loader))
                indices_queue = multiprocessing.Queue()
                for i in range(10):
                    indices_queue.put([i, i + 10])
                indices_queue.put(None)
                loader._workers_done_event.set()
226
                base_seed = 1234
227 228
                _worker_loop(loader._dataset, 0, indices_queue,
                             loader._data_queue, loader._workers_done_event,
229
                             True, _collate_fn, True, _init_fn, 0, 1,
230
                             loader._use_shared_memory, base_seed)
231 232 233 234 235 236 237
                self.assertTrue(True)
        except AssertionError:
            pass
        except Exception:
            self.assertTrue(False)

    def test_main(self):
238 239
        # only HACK a subprocess call here, do not need to use_shared_memory
        for use_shared_memory in [False]:
240 241 242 243 244 245
            self.run_without_worker_done(use_shared_memory)
            self.run_with_worker_done(use_shared_memory)


if __name__ == '__main__':
    unittest.main()