dataloader_iter.py 32.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import six
import sys
import time
import signal
20
import numbers
21 22 23 24 25
import logging
import itertools
import threading
import numpy as np
import multiprocessing
26
from collections import namedtuple
27
from paddle.fluid.framework import _set_expected_place, _current_expected_place, set_flags
28 29

# NOTE: queue has a different name in python2 and python3
T
tianshuo78520a 已提交
30
import queue
31

32
import paddle
C
chenjian 已提交
33
import paddle.profiler as profiler
34
from paddle.profiler.utils import in_profiler_mode
35
from .. import core, layers
J
Jiabin Yang 已提交
36
from ..framework import _non_static_mode, in_dygraph_mode, _in_legacy_dygraph
37
from ..multiprocess_utils import _set_SIGCHLD_handler, MP_STATUS_CHECK_INTERVAL, CleanupFuncRegistrar
38
from .fetcher import _IterableDatasetFetcher, _MapDatasetFetcher
39
from .batch_sampler import _InfiniteIterableSampler
40 41
from .collate import default_collate_fn, default_convert_fn
from .worker import ParentWatchDog, get_worker_info, _worker_loop, \
K
Kaipeng Deng 已提交
42 43
        _DatasetKind, _IterableDatasetStopIteration, _WorkerException, \
        _ResumeIteration
44
from .flat import _flatten_batch, _restore_batch
Z
Zhang Ting 已提交
45
from paddle.profiler.timer import benchmark
46 47

__all__ = ['get_worker_info']
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
# NOTE: fix `terminate called without an active exception`
# if for loop break and program exit immediately(with no model
# layers processing) after iterate **the first few data** in
# distributed lauch mode, distributed launch will call
# terminate() to kill main process on each devices, but thread
# is still iterating to fullfill blocking queue caches, which
# may cause thread error `terminate called without an active
# exception` for terminate is a strong singal and `__del__`
# of DataLoader may not be called, so we add a global link to
# the last DataLoader instance to call `__del__` to clean up
# resources
# NOTE: cannot simply as `__del__` to CleanupFuncRegistrar,
# for this will remain a link to each DataLoader instance in
# global, and will precludes GC to auto collect DataLoader
# instance and will cause memory leak
_loader = None


def _clear_loader():
    global _loader
    if _loader is not None:
        try:
            _loader.__del__()
            del _loader
        except:
            pass


CleanupFuncRegistrar.register(_clear_loader)

79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
class _DataLoaderIterBase(object):
    """
    Iterator implement of DataLoader, will load and feed mini-batch
    data by setting in given dataloader.

    Args:
        loader(instance of DataLoader): instance of `fluid.io.DataLoader`
    """

    def __init__(self, loader):
        self._dataset = loader.dataset
        self._feed_list = loader.feed_list or []
        self._places = loader.places
        self._return_list = loader.return_list
        self._batch_sampler = loader.batch_sampler
95
        self._drop_last = loader.drop_last
96
        self._auto_collate_batch = loader.auto_collate_batch
97 98
        self._num_workers = loader.num_workers
        self._use_buffer_reader = loader.use_buffer_reader
99
        self._prefetch_factor = loader.prefetch_factor
100
        self._use_shared_memory = loader.use_shared_memory
101
        self._timeout = loader.timeout if loader.timeout > 0 else MP_STATUS_CHECK_INTERVAL
102
        self._worker_init_fn = loader.worker_init_fn
103
        self._dataset_kind = loader.dataset_kind
104
        self._pin_memory = loader.pin_memory
105

K
Kaipeng Deng 已提交
106
        self._sampler_iter = iter(self._index_sampler)
107 108 109
        if self._auto_collate_batch:
            self._collate_fn = loader.collate_fn or default_collate_fn
        else:
110
            self._collate_fn = loader.collate_fn or default_convert_fn
111

112 113 114 115 116 117 118 119 120
        # LoDTensorBlockingQueue instance for create_py_reader and a thread
        # to put mini-batch data to self._blocking_queue, mini-batch data
        # will be get from:
        # 1. multi-process mode: get data from workers' result queue
        # 2. single-process mode: read mini-batch data in main process
        self._blocking_queue = None
        self._thread = None
        self._thread_done_event = threading.Event()

K
Kaipeng Deng 已提交
121 122 123 124 125 126 127 128 129 130
    @property
    def _index_sampler(self):
        if self._auto_collate_batch:
            return self._batch_sampler
        else:
            if self._dataset_kind == _DatasetKind.MAP:
                return list(range(len(self._dataset)))
            else:
                return _InfiniteIterableSampler(self._dataset, 1)

131 132 133 134 135 136
    def __iter__(self):
        return self

    def __len__(self):
        return len(self._batch_sampler)

137 138 139 140 141 142 143 144 145 146
    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        if self._blocking_queue:
            self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        if self._blocking_queue:
            self._blocking_queue.kill()

147 148 149 150 151 152 153 154 155 156

class _DataLoaderIterSingleProcess(_DataLoaderIterBase):
    """
    Single process implement of DataLoaderIter, loading data from
    loader.data in main process
    """

    def __init__(self, loader):
        super(_DataLoaderIterSingleProcess, self).__init__(loader)

157
        self._dataset_fetcher = _DatasetKind.create_fetcher(
158
            self._dataset_kind, self._dataset, self._auto_collate_batch,
159
            self._collate_fn, self._drop_last)
160

161 162 163 164 165 166 167 168
        # NOTE: _structrue_infos used to record the data structure of
        # batch to restore batch structure after reading Tensor
        # from blocking_queue in single-process mode. Note that
        # only single process is used in single-process mode, we
        # can record the data structure sequencely in a list without
        # recording the send and recv index
        self._structure_infos = []

169
        # NOTE: len(self._places) batch data compose as an output
170
        # iteration, set blocking_queue can cache "self._prefetch_factor" iteration datas
171
        # at most here
172 173
        self._blocking_queue_capacity = self._prefetch_factor * len(
            self._places)
174 175

        self._init_thread()
176 177 178 179
        self._shutdown = False

        global _loader
        _loader = self
180 181 182 183 184 185 186 187

    def _init_thread(self):
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
188
        # if only 1 place, do not need to keep order
189
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
190 191
            core.Variable(), self._blocking_queue_capacity,
            len(self._places) > 1)
192 193
        self._reader = core.create_py_reader(
            self._blocking_queue, self._var_names, self._shapes, self._dtypes,
194 195
            self._need_check_feed, self._places, self._use_buffer_reader, True,
            self._pin_memory)
196

197 198
        self._thread = threading.Thread(
            target=self._thread_loop, args=(_current_expected_place(), ))
199 200 201
        self._thread.daemon = True
        self._thread.start()

202
    def _thread_loop(self, legacy_expected_place):
203 204 205 206 207 208 209 210 211 212 213 214 215
        #NOTE(zhiqiu): Set the expected place for new thread as the same as father thread,
        # and it will call platform::SetDeviceId() in c++ internally.
        # If we do not set cudaDeviceId in new thread, the default cudaDeviceId will be 0,
        # Which may cost hundreds of MB of GPU memory on CUDAPlace(0) if calling some cuda 
        # APIs in this thread.
        _set_expected_place(legacy_expected_place)

        while not self._thread_done_event.is_set():
            try:
                indices = next(self._sampler_iter)

                # read data from dataset in mini-batch
                # with paddle.fluid.dygraph.guard(place=paddle.CPUPlace()):
216
                # read data from dataset in mini-batch
217 218 219 220 221 222 223 224 225 226 227
                batch = self._dataset_fetcher.fetch(indices,
                                                    self._thread_done_event)
            except StopIteration:
                self._exit_thread_expectedly()
                return

            if batch is None or self._thread_done_event.is_set(): break

            # flat batch and record structure infos
            batch, structure = _flatten_batch(batch)
            self._structure_infos.append(structure)
228

229
            if self._thread_done_event.is_set(): break
230

231
            try:
232 233 234
                # pack as LoDTensorArray
                array = core.LoDTensorArray()
                for slot in batch:
W
wanghuancoder 已提交
235
                    if isinstance(slot, (paddle.Tensor, core.eager.Tensor)):
K
Kaipeng Deng 已提交
236 237
                        slot = slot.value().get_tensor()
                    elif not isinstance(slot, core.LoDTensor):
238 239 240 241 242 243
                        tmp = core.LoDTensor()
                        tmp.set(slot, core.CPUPlace())
                        slot = tmp

                    array.append(slot)

244
                if self._thread_done_event.is_set(): break
245

246 247 248 249
                try:
                    self._blocking_queue.push(array)
                except:
                    self._exit_thread_expectedly()
250

251 252 253 254 255
            except:
                self._exit_thread_unexpectedly()
                six.reraise(*sys.exc_info())

        self._exit_thread_expectedly()
256 257

    def __next__(self):
258 259 260 261 262
        if in_profiler_mode():
            trace_event = profiler.RecordEvent(
                name="_DataLoaderIterSingleProcess",
                event_type=profiler.TracerEventType.Dataloader)
            trace_event.begin()
263
        try:
Z
Zhang Ting 已提交
264 265
            benchmark().check_if_need_record(self)
            benchmark().before_reader()
266
            if in_dygraph_mode():
J
Jiabin Yang 已提交
267 268
                data = core.eager.read_next_tensor_list(
                    self._reader.read_next_list()[0])
269
                data = _restore_batch(data, self._structure_infos.pop(0))
270
            else:
J
Jiabin Yang 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
                if _in_legacy_dygraph():
                    data = self._reader.read_next_var_list()
                    data = _restore_batch(data, self._structure_infos.pop(0))
                else:  # in static mode
                    if self._return_list:
                        data = self._reader.read_next_list()
                        for i in range(len(data)):
                            data[i] = data[i]._move_to_list()
                        data = [
                            _restore_batch(d, s)
                            for d, s in zip(data, self._structure_infos[:len(
                                self._places)])
                        ]
                        self._structure_infos = self._structure_infos[len(
                            self._places):]
                        # static graph organized data on multi-device with list, if
                        # place number is 1, there is only 1 device, extra the data
                        # from list for devices to be compatible with dygraph mode
                        if len(self._places) == 1:
                            data = data[0]
                    else:
                        data = self._reader.read_next()
Z
Zhang Ting 已提交
293
            benchmark().after_reader()
294 295

            return data
296
        except StopIteration:
297
            self._reader.shutdown()
298
            self._try_shutdown_all()
299
            six.reraise(*sys.exc_info())
C
chenjian 已提交
300
        finally:
301 302
            if in_profiler_mode():
                trace_event.end()
303

304 305 306
    def _shutdown_thread(self):
        if self._thread:
            self._thread_done_event.set()
307 308 309 310 311 312 313 314 315 316 317
            # NOTE: we wait for _thread exit for 3 seconds, if
            #       thread not exit normally, force kill it
            for _ in range(3):
                if self._thread.is_alive():
                    time.sleep(1)
                else:
                    break
            else:
                if self._thread is not threading.current_thread():
                    self._thread.join()

318
            self._thread = None
319

320 321 322 323
    # python2 compatibility
    def next(self):
        return self.__next__()

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
    def _try_shutdown_all(self):
        if not self._shutdown:
            try:
                # # _blocking_queue in keep order mode holds sub-threads
                # # need to release thread resources on unexpected exit
                if self._blocking_queue:
                    self._blocking_queue.close()
                    self._blocking_queue = None
                # NOTE: blocking queue should be closed firstly for
                # blocking queue read may hang and _thread_done_event
                # cannot be checked
                self._shutdown_thread()
            finally:
                self._shutdown = True

339
    def __del__(self):
340
        self._try_shutdown_all()
341

342 343 344 345 346

class _DataLoaderIterMultiProcess(_DataLoaderIterBase):
    def __init__(self, loader):
        super(_DataLoaderIterMultiProcess, self).__init__(loader)

K
Kaipeng Deng 已提交
347 348 349
        self._persistent_workers = loader._persistent_workers
        self._resume_worker_cnt = 0

350 351 352 353 354 355 356 357
        assert self._num_workers > 0,  "Multi-process DataLoader " \
                    "invalid num_workers({})".format(self._num_workers)

        # subprocess wrokers' result queue
        self._data_queue = None

        # data get from _data_queue will be reordered by _rcvd_idx
        # for data order keeping, data index not equal _rcvd_idx 
358
        # will be cached in _task_infos
359 360 361
        self._send_idx = 0
        self._rcvd_idx = 0
        self._batches_outstanding = 0
362
        self._task_infos = {}
363
        self._structure_infos = []
364 365 366 367

        # indices outstand as _outstanding_capacity at first, and
        # blocking_queue capacity is also _outstanding_capacity.
        # _outstanding_capacity here to make sure each indices_queue
368 369
        # has at least "_prefetch_factor" indices, and outstanding batch cached
        # output data for at least "_prefetch_factor" iterations(Note that len(_places)
370
        # batches will be composed as an iteration output)
371 372
        self._outstanding_capacity = self._prefetch_factor * max(
            self._num_workers, len(self._places))
373

374 375 376
        # see _try_put_indices
        self._thread_lock = threading.Lock()

377 378
        self._base_seed = np.random.randint(low=0, high=sys.maxsize)

379
        # init workers and indices queues and put 2 indices in each indices queue
380 381 382 383
        self._init_workers()
        for _ in range(self._outstanding_capacity):
            self._try_put_indices()

384 385 386
        self._init_thread()
        self._shutdown = False

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
    def _init_workers(self):
        # multiprocess worker and indice queue list initial as empty
        self._workers = []
        self._worker_status = []
        self._indices_queues = []
        self._workers_idx_cycle = itertools.cycle(range(self._num_workers))

        # create data_queue for workers
        self._data_queue = multiprocessing.Queue()

        # event for workers and thread, thread event is only need 
        # in multi-processing mode
        self._workers_done_event = multiprocessing.Event()
        self._thread_done_event = threading.Event()

        for i in range(self._num_workers):
            indices_queue = multiprocessing.Queue()
            self._indices_queues.append(indices_queue)
            worker = multiprocessing.Process(
406
                target=_worker_loop,
407 408
                args=(self._dataset, self._dataset_kind, indices_queue,
                      self._data_queue, self._workers_done_event,
409
                      self._auto_collate_batch, self._collate_fn,
410
                      self._drop_last, self._worker_init_fn, i,
411 412
                      self._num_workers, self._use_shared_memory,
                      self._base_seed))
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
            worker.daemon = True
            worker.start()
            self._workers.append(worker)
            self._worker_status.append(True)

        core._set_process_pids(id(self), tuple(w.pid for w in self._workers))
        _set_SIGCHLD_handler()

    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except:
                    self._data_queue.cancel_join_thread()
                    self._data_queue.close()
                    break

    def _init_thread(self):
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
438
        # if only 1 place, do not need to keep order
439
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
440
            core.Variable(), self._outstanding_capacity, len(self._places) > 1)
441 442
        self._reader = core.create_py_reader(
            self._blocking_queue, self._var_names, self._shapes, self._dtypes,
443 444
            self._need_check_feed, self._places, self._use_buffer_reader, True,
            self._pin_memory)
445 446

        self._thread_done_event = threading.Event()
K
Kaipeng Deng 已提交
447
        # thread event is only need in multi-processing mode
448 449
        self._thread = threading.Thread(
            target=self._thread_loop, args=(_current_expected_place(), ))
450 451 452
        self._thread.daemon = True
        self._thread.start()

K
Kaipeng Deng 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
    def _reset(self):
        # resume iteration in following steps
        # 1. Resume workers, clear worker caches
        # put _ResumeIteration to all worker as resume iteration flag
        with self._thread_lock:
            self._resume_worker_cnt = self._num_workers
            for worker_id in range(self._num_workers):
                self._indices_queues[worker_id].put(_ResumeIteration())
                self._batches_outstanding += 1
        # all flag will be check in _thread_loop, simply wait here
        while self._resume_worker_cnt > 0:
            time.sleep(0.5)

        # 2. clear blocking_queue caches
        # in order not to restart the thread, we just clear
        # the blocking_queue cachees instead of recreating one
        while self._blocking_queue.size() >= len(self._places):
            if in_dygraph_mode():
J
Jiabin Yang 已提交
471 472
                data = core.eager.read_next_tensor_list(
                    self._reader.read_next_list()[0])
K
Kaipeng Deng 已提交
473
            else:
J
Jiabin Yang 已提交
474 475 476 477 478 479
                if _in_legacy_dygraph():
                    self._reader.read_next_var_list()
                elif self._return_list:
                    self._reader.read_next_list()
                else:
                    data = self._reader.read_next()
K
Kaipeng Deng 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499

        # 3. reset all states
        self._send_idx = 0
        self._rcvd_idx = 0
        self._batches_outstanding = 0
        self._task_infos = {}
        self._structure_infos = []

        # set all worker status available
        self._worker_status = [True] * self._num_workers

        # 4. reset _sampler_iter and put prefetch indices to start next epoch
        # init workers and indices queues and put 2 indices in each indices queue
        self._sampler_iter = iter(self._index_sampler)
        for _ in range(self._outstanding_capacity):
            self._try_put_indices()

    def _shutdown_worker(self, worker_id, shutdown=False):
        if self._worker_status[worker_id] or (self._persistent_workers and
                                              shutdown):
500 501 502
            self._indices_queues[worker_id].put(None)
            self._worker_status[worker_id] = False

503
    def _try_shutdown_all(self, timeout=None):
504 505 506 507 508 509 510 511 512 513
        if not self._shutdown:
            try:
                self._exit_thread_expectedly()
                self._clear_and_remove_data_queue()

                # set _workers_done_event should be set before put None
                # to indices_queue, workers wll exit on reading None from
                # indices_queue
                self._workers_done_event.set()
                for i in range(self._num_workers):
K
Kaipeng Deng 已提交
514
                    self._shutdown_worker(i, shutdown=True)
515

516 517 518 519 520 521
                if not self._shutdown:
                    for w in self._workers:
                        w.join(timeout)
                    for q in self._indices_queues:
                        q.cancel_join_thread()
                        q.close()
522 523 524 525
            finally:
                core._erase_process_pids(id(self))
                self._shutdown = True

526 527 528 529 530 531 532 533
    def _thread_loop(self, legacy_expected_place):
        #NOTE(zhiqiu): Set the expected place for new thread as the same as father thread,
        # and it will call platform::SetDeviceId() in c++ internally.
        # If we do not set cudaDeviceId in new thread, the default cudaDeviceId will be 0,
        # Which may cost hundreds of MB of GPU memory on CUDAPlace(0) if calling some cuda 
        # APIs in this thread.
        _set_expected_place(legacy_expected_place)

534 535 536 537 538 539
        while not self._thread_done_event.is_set():
            batch = self._get_data()
            if not self._thread_done_event.is_set():
                if batch is None:
                    self._exit_thread_expectedly()
                else:
K
Kaipeng Deng 已提交
540 541 542 543
                    if isinstance(batch, _ResumeIteration):
                        assert self._resume_worker_cnt > 0
                        self._resume_worker_cnt -= 1
                        continue
544 545 546 547 548 549 550 551 552 553
                    try:
                        # pack as LoDTensorArray
                        array = core.LoDTensorArray()
                        if self._use_shared_memory:
                            for tensor in batch:
                                array.append(tensor)
                        else:
                            # LoDTensor not in shared memory is not
                            # serializable, cannot be create in workers
                            for slot in batch:
W
wanghuancoder 已提交
554 555
                                if isinstance(slot, (paddle.Tensor,
                                                     core.eager.Tensor)):
K
Kaipeng Deng 已提交
556 557
                                    slot = slot.value().get_tensor()
                                elif not isinstance(slot, core.LoDTensor):
558 559 560 561 562 563 564
                                    tmp = core.LoDTensor()
                                    tmp.set(slot, core.CPUPlace())
                                    slot = tmp
                                array.append(slot)

                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
K
Kaipeng Deng 已提交
565
                    except Exception as e:
566 567 568 569 570 571 572
                        self._exit_thread_unexpectedly()
                        six.reraise(*sys.exc_info())
                    finally:
                        self._rcvd_idx += 1

    def _get_data(self):
        while not self._thread_done_event.is_set():
573 574 575 576 577 578
            # For IterableDataset, batch indices is generated infinitely
            # for each worker to raise StopIteration, but a StopIteration
            # raising process will discard a batch indices which is count
            # in _send_idx but will not increase _rcvd_idx, so we check 
            # whether the worker is still alive here to skip the discarded
            # batch indices and increase _rcvd_idx
579 580 581
            if self._dataset_kind == _DatasetKind.ITER:
                while self._rcvd_idx < self._send_idx:
                    info = self._task_infos[self._rcvd_idx]
582
                    if len(info) == 3 or self._worker_status[info[0]]:
583 584 585 586 587
                        break
                    del self._task_infos[self._rcvd_idx]
                    self._rcvd_idx += 1
                    self._batches_outstanding -= 1
                else:
588 589 590 591 592 593 594 595
                    # NOTE: when _rcvd_idx catch up _send_idx, which means
                    #       one of following:
                    #       1. all 2 * num_workers batches have been loaded
                    #          and stored in _blocking_queue
                    #       2. all data drained
                    #       we need to let _thread blocking at _data_queue
                    #       get_data to inoccupy CPU, otherwise may occupy
                    #       CPU time for model running
K
Kaipeng Deng 已提交
596 597 598 599 600 601 602 603 604
                    # NOTE: in persistent workers mode, do not check data
                    #       drained here, simply let it go to _data_queue
                    #       reading to get _ResumeIteration
                    if not self._persistent_workers:
                        # NOTE: _rcvd_idx and _send_idx only record batches among
                        #       workers, if batches among workers drained, there
                        #       may also be data in blocking queue
                        if self._batches_outstanding < len(self._places):
                            return None
605 606

            if self._rcvd_idx in self._task_infos and \
607 608 609 610
                    len(self._task_infos[self._rcvd_idx]) == 3:
                info = self._task_infos.pop(self._rcvd_idx)
                self._structure_infos.append(info[2])
                return info[1]
611

612 613 614
            try:
                # [ avoid hang ]: main process may blocking at _reader.read_next when
                # KeyboardInterrupt, we do following tradeoff:
615
                # 1. get data with timeout, MP_STATUS_CHECK_INTERVAL(5s) as timeout
616 617 618 619 620 621 622
                #    default, if KeyboardInterrupt blocking, failed workers will be
                #    checked and raise RuntimeError to quit DataLoader in timeout
                #    exception handling.
                # 2. if get data timeout and check workers all alive, continue to
                #    get data again
                data = self._data_queue.get(timeout=self._timeout)
            except Exception as e:
623 624 625 626 627
                # check if thread done event set when waiting data
                if self._thread_done_event.is_set():
                    continue

                # check failed workers
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
                failed_workers = []
                for i, w in enumerate(self._workers):
                    if self._worker_status[i] and not w.is_alive():
                        failed_workers.append(w)
                        self._shutdown_worker(i)
                if len(failed_workers) > 0:
                    self._exit_thread_unexpectedly()
                    pids = ', '.join(str(w.pid) for w in failed_workers)
                    raise RuntimeError("DataLoader {} workers exit unexpectedly, " \
                                "pids: {}".format(len(failed_workers), pids))

                # get(timeout) will call _poll(timeout) and may raise IOError
                if isinstance(e, queue.Empty) or isinstance(e, IOError):
                    # continue on timeout to keep getting data from queue
                    continue

                self._exit_thread_unexpectedly()
                logging.error("DataLoader reader thread failed({}) to read data from " \
                              "workers' result queue.".format(e))
                six.reraise(*sys.exc_info())
            else:
649 650 651 652 653 654 655
                if self._dataset_kind == _DatasetKind.ITER and isinstance(
                        data, _IterableDatasetStopIteration):
                    # if a worker get StopIteraion, we shutdown this worker,
                    # note that this batch indices to trigger StopIteration
                    # is discard, outstanding batch number should be decrease
                    # and another indices should be put for other workers
                    # may still working.
K
Kaipeng Deng 已提交
656 657 658 659 660
                    if self._persistent_workers:
                        self._worker_status[data.worker_id] = False
                    else:
                        self._shutdown_worker(data.worker_id)
                        self._batches_outstanding -= 1
661 662 663
                    self._try_put_indices()
                    continue

664
                idx, batch, structure = data
K
Kaipeng Deng 已提交
665 666 667 668 669

                if isinstance(idx, _ResumeIteration) and batch is None \
                        and structure is None:
                    return idx

670 671 672 673
                if isinstance(batch, _WorkerException):
                    self._exit_thread_unexpectedly()
                    batch.reraise()

674
                if idx == self._rcvd_idx:
675
                    del self._task_infos[idx]
676
                    self._structure_infos.append(structure)
677 678
                    return batch
                else:
679
                    self._task_infos[idx] += (batch, structure)
680 681 682
                    continue

    def _try_put_indices(self):
683
        assert self._batches_outstanding <= self._outstanding_capacity, \
684
                    "too many indices have been put to queue"
685 686 687 688 689 690 691 692 693 694 695 696 697 698
        # In multi-process mode for IterableDataset, _try_put_indices will
        # be called both in main process(for our implement has blocking queue,
        # and blocking queue read is in main process) and thread, which may
        # cause error following error
        #   1. "ValueError: generator already executing" in next(self._sampler_iter)
        #   2. re-enter in increase _send_idx
        # add a lock for threading save, for _try_put_indices is only a slight
        # function which is not in data reading pipeline, this lock almost no
        # influence on performance
        with self._thread_lock:
            try:
                indices = next(self._sampler_iter)
            except StopIteration:
                return
699

700 701 702 703 704 705
            for i in range(self._num_workers):
                worker_idx = next(self._workers_idx_cycle)
                if self._worker_status[worker_idx]:
                    break
            else:
                return
706

707 708 709 710
            self._indices_queues[worker_idx].put((self._send_idx, indices))
            self._task_infos[self._send_idx] = (worker_idx, )
            self._batches_outstanding += 1
            self._send_idx += 1
711 712 713 714

    def __del__(self):
        self._try_shutdown_all()

715 716 717
    def _shutdown_on_exit(self):
        self._try_shutdown_all(1)

718
    def __next__(self):
719 720 721 722 723
        if in_profiler_mode():
            trace_event = profiler.RecordEvent(
                name="_DataLoaderIterMultiProcess",
                event_type=profiler.TracerEventType.Dataloader)
            trace_event.begin()
724
        try:
Z
Zhang Ting 已提交
725 726
            benchmark().check_if_need_record(self)
            benchmark().before_reader()
727 728 729 730 731 732 733 734
            # _batches_outstanding here record the total batch data number
            # in 'from after _try_put_indices to beforeoutput data', this
            # value should be _outstanding_capacity if data is not drained,
            # if _batches_outstanding is less than _places number, there are
            # no enough data to generate next output, close blocking_queue and
            # set _thread_done_event here, py_reader will raise StopIteration,
            # end workers and indices_queues in StopIteration handling
            if self._batches_outstanding < len(self._places):
K
Kaipeng Deng 已提交
735 736 737 738 739
                if self._persistent_workers:
                    raise StopIteration
                else:
                    self._thread_done_event.set()
                    self._blocking_queue.close()
740 741

            if in_dygraph_mode():
J
Jiabin Yang 已提交
742 743
                data = core.eager.read_next_tensor_list(
                    self._reader.read_next_list()[0])
744
                data = _restore_batch(data, self._structure_infos.pop(0))
745
            else:
J
Jiabin Yang 已提交
746 747 748
                if _in_legacy_dygraph():
                    data = self._reader.read_next_var_list()
                    data = _restore_batch(data, self._structure_infos.pop(0))
749
                else:
J
Jiabin Yang 已提交
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
                    if self._return_list:
                        data = self._reader.read_next_list()
                        for i in range(len(data)):
                            data[i] = data[i]._move_to_list()
                        data = [
                            _restore_batch(d, s)
                            for d, s in zip(data, self._structure_infos[:len(
                                self._places)])
                        ]
                        self._structure_infos = self._structure_infos[len(
                            self._places):]
                        # static graph organized data on multi-device with list, if
                        # place number is 1, there is only 1 device, extra the data
                        # from list for devices to be compatible with dygraph mode
                        if len(self._places) == 1:
                            data = data[0]
                    else:
                        data = self._reader.read_next()
768
            self._on_output_batch()
Z
Zhang Ting 已提交
769
            benchmark().after_reader()
770 771
            return data
        except StopIteration:
K
Kaipeng Deng 已提交
772 773 774
            if not self._persistent_workers:
                self._reader.shutdown()
                self._try_shutdown_all()
775
            six.reraise(*sys.exc_info())
C
chenjian 已提交
776
        finally:
777 778
            if in_profiler_mode():
                trace_event.end()
779 780 781 782 783 784 785 786 787

    # python2 compatibility
    def next(self):
        return self.__next__()

    def _on_output_batch(self):
        for _ in range(len(self._places)):
            self._batches_outstanding -= 1
            self._try_put_indices()