math.py 46.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17

18
from __future__ import print_function
19

20
from paddle.common_ops_import import *
21
from ..fluid import layers
22
from ..fluid.framework import core
23 24 25 26 27 28
from ..fluid.layers.layer_function_generator import _generate_doc_string_

# TODO: define math functions
# yapf: disable
__all__ = [
#            'abs',
29 30
#            'acos',
#            'asin',
31
           'atan',
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
#            'ceil',
#            'cos',
#            'cumsum',
#            'elementwise_add',
#            'elementwise_div',
#            'elementwise_floordiv',
#            'elementwise_max',
#            'elementwise_min',
#            'elementwise_mod',
#            'elementwise_mul',
#            'elementwise_pow',
#            'elementwise_sub',
#            'exp',
#            'floor',
#            'increment',
#            'log',
48
           'mul',
49
#            'multiplex',
50
           'pow',
51 52 53 54 55 56 57 58 59
#            'reciprocal',
#            'reduce_max',
#            'reduce_min',
#            'reduce_prod',
#            'reduce_sum',
#            'round',
#            'rsqrt',
#            'scale',
#            'sign',
60 61
           'sin',
           'sqrt',
62 63
#            'square',
#            'stanh',
64
           'sum',
65
#            'sums',
66
           'tanh',
67
           'elementwise_sum',
68 69
           'max',
           'min',
70
           'mm',
71 72
           'div',
           'add',
73
#            'atan',
74
           'logsumexp',
75
#            'inverse',
76
           'log1p',
77 78
#            'erf',
#            'addcmul',
79
           'addmm'
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
]
# yapf: enable.


def generate_op_noattr(op_type):
    """Register the Python layer for an Operator without Attribute..

    Args:
       op_type: The name of the operator to be created.

    This function takes in the operator type (sin, tanh etc) and
    creates the operator functionality.

    """
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)

    def func(x, name=None, out=None):
        if in_dygraph_mode():
            op = getattr(core.ops, op_type)
            return op(x)

        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 op_type)
        helper = LayerHelper(op_type, **locals())

        if name and out:
            warnings.warn(
                "Both name and out parameters have been set in fluid.tensor.math.%s(), only out will take effect to specify the result storage. "
                "You can discard either one to solve this warning." % op_type,
                category=UserWarning,
                stacklevel=2)
        if not out:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type=op_type, inputs={"X": x}, outputs={"Out": out})
        return out

    func.__name__ = op_type
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
            "name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`.\n    "
            "out(Variable, optional): The default value is None. Optional output can be any created Variable that meets the requirements to store the result of operation. if out is None, a new Varibale will be create to store the result."
        ])
    func.__doc__ = func.__doc__ + """

Return type
  Variable
Examples:
    .. code-block:: python

        import numpy as np
        
        import paddle
        import paddle.fluid as fluid

        inputs = fluid.data(name="x", shape = [None, 4], dtype='float32')
        output = paddle.%s(inputs)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        #input.shape=1X4, batch_size=1
        img = np.array([[1.0, 2.0, 3.0, 4.0]]).astype(np.float32)
        res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
        print(res)
""" % op_type
    return func

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
@templatedoc()
def pow(input, exponent, out=None, name=None):
    """
    This is Pow Activation Operator.

    :math:`out = input^{exponent}`

    Args:
        input(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32`` or ``float64``.
        exponent(float32|Variable): A scalar with type ``float32`` or a ``Tensor`` with shape [1] and type ``float32``.
        out (Variable, optional):  The Variable that stores results of the operation. 
            If out is None, a new Variable will be created to store the results.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``input``.

    Examples:

        .. code-block:: python

            import paddle
171
            import paddle.fluid as fluid
172

173
            x = fluid.data(name="x", shape=[32,32], dtype="float32")
174 175

            # example 1: argument exponent is float
176
            res = fluid.data(name="output", shape=[32,32], dtype="float32")
177 178 179 180 181
            y_1 = paddle.pow(x, 2.0, out=res)
            # y_1 is x^{2.0}

            # example 2: argument exponent is Variable
            exponet_tensor = fluid.layers.fill_constant([1], "float32", 3.0)
182 183
            res = fluid.data(name="output", shape=[32,32], dtype="float32")
            y_2 = paddle.pow(x, exponet_tensor, out=res)
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
            # y_2 is x^{3.0}
    """
    helper = LayerHelper('pow', **locals())
    inputs = {'X': input}
    attrs = {}
    if isinstance(exponent, Variable):
        exponent.stop_gradient = True
        inputs['FactorTensor'] = exponent
    else:
        attrs['factor'] = exponent

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        check_dtype(
            out.dtype, out.name,
            convert_dtype(input.dtype), 'pow',
            '(The out data type in pow must be the same with input data type.)')
        if name:
            warnings.warn(
                "The output Variable name of the paddle.tensor.pow operation can only be given by parameter out or name. \
                When parameter out and name are set at the same time, out has a higher priority than name. \
                Finally, the output Variable name is same as the out name %s"
                                                                              %
                out.name,
                category=UserWarning,
                stacklevel=2)

    helper.append_op(
        type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out


def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, out=None, name=None):
    """
    Mul Operator.
    This operator is used to perform matrix multiplication for input $x$ and $y$.
    The equation is:

    ..  math::
        Out = x * y

    Both the input $x$ and $y$ can carry the LoD (Level of Details) information, or not. 
    But the output only shares the LoD information with input $x$.

    Args:
        x (Variable): The first input Tensor/LoDTensor of mul_op.
        y (Variable): The second input Tensor/LoDTensor of mul_op.
        x_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. 
            If the input $x$ is a tensor with more than two dimensions, $x$ will be flattened into a two-dimensional 
            matrix first. The flattening rule is: the first `num_col_dims` will be flattened to form the first 
            dimension of the final matrix (the height of the matrix), and the rest `rank(x) - num_col_dims` 
            dimensions are flattened to form the second dimension of the final matrix (the width of the matrix). 
            As a result, height of the flattened matrix is equal to the product of $x$'s first `x_num_col_dims` dimensions' 
            sizes, and width of the flattened matrix is equal to the product of $x$'s last `rank(x) - num_col_dims` 
            dimensions' size. For example, suppose $x$ is a 6-dimensional tensor with the shape [2, 3, 4, 5, 6], 
            and `x_num_col_dims` = 3. Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default is 1. 
        y_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the 
            input $y$ is a tensor with more than two dimensions, $y$ will be flattened into a two-dimensional matrix first. 
            The attribute `y_num_col_dims` determines how $y$ is flattened. See comments of `x_num_col_dims` for more details. 
            Default is 1. 
        out(Variable, optinal): The Variable that stores results of the operation. If out is None, 
            a new Variable will be created to store the results.
        name (str, optional): Name of the output. Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`. Default is None. If both of out and name are not None, 
            the output name will be same as out. 

    Returns:
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of mul op.

    Examples:
        ..  code-block:: python
            
            import paddle
258 259 260
            import paddle.fluid as fluid
            dataX = fluid.data(name="dataX", shape=[2, 5], dtype="float32")
            dataY = fluid.data(name="dataY", shape=[5, 3], dtype="float32")
261
            
262
            res = fluid.data(name="output", shape=[2, 3], dtype="float32")
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
            output = paddle.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1, 
                                      out=res)
            

    """
    inputs = {"X": [x], "Y": [y]}
    attrs = {"x_num_col_dims": x_num_col_dims, "y_num_col_dims": y_num_col_dims}
    if in_dygraph_mode():
        outs = core.ops.mul(inputs, attrs)
        return outs['Out'][0]

    helper = LayerHelper("mul", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mul')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64'], 'mul')

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        check_dtype(
            out.dtype, out.name,
            convert_dtype(x.dtype), 'mul',
            '(The out data type in pow must be the same with input data type.)')
        if name:
            warnings.warn(
                "The output Variable name of the paddle.tensor.pow operation can only be given by parameter out or name.\
                When parameter out and name are set at the same time, out has a higher priority than name. \
                Finally, the output Variable name is same as the out name %s"
                                                                              %
                out.name,
                category=UserWarning,
                stacklevel=2)
    helper.append_op(
        type="mul", inputs={"X": x,
                            "Y": y}, attrs=attrs, outputs={"Out": out})
    return out

301 302 303 304 305 306 307 308 309 310

__ops__noattr__ = [
    'atan',
    'sin',
    'sqrt',
    'tanh',
]

for _OP in set(__ops__noattr__):
    globals()[_OP] = generate_op_noattr(_OP)
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652


@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
    op = getattr(core.ops, op_name)
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)


def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
    out = helper.kwargs.get('out', None)
    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


def add(x, y, alpha=1, out=None, name=None):
    """
Examples:

    .. code-block:: python

        import paddle
        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
            }

        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
        z1 = paddle.add(x, y)
        z2 = paddle.add(x, y, alpha=10)
        # z = x + y

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z1.name, z2.name])

        print(z_value[0]) # [3., 8., 6.]
        print(z_value[1]) # [12. 53. 24.]


    .. code-block:: python

        import paddle
        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((4, 5)).astype('float32')
            }

        x = fluid.data(name="x", shape=[2, 3, 4, 5], dtype='float32')
        y = fluid.data(name="y", shape=[4, 5], dtype='float32')
        z = paddle.add(x, y, name='z')
        # z = x + y

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value[0])
        print(z_value[0].shape) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle
        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }

        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
        z = paddle.add(x, y)
        # z = x / y

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value[0])
        print(z_value[0].shape) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle
        import paddle.fluid as fluid
        import numpy as np

        x = fluid.data(name="x", shape=[3], dtype="float32")
        y = fluid.data(name='y', shape=[3], dtype='float32')

        output = fluid.data(name="output", shape=[3], dtype="float32")
        z = paddle.add(x, y, out=output)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        data1 = np.array([2, 3, 4], dtype='float32')
        data2 = np.array([1, 5, 2], dtype='float32')
        z_value = exe.run(feed={'x': data1,
                                'y': data2},
                                fetch_list=[z])
        print(z_value[0]) # [3. 8. 6.]


    ..  code-block:: python

        import paddle
        import paddle.fluid as fluid
        import numpy as np

        with fluid.dygraph.guard():
            np_x = np.array([2, 3, 4]).astype('float64')
            np_y = np.array([1, 5, 2]).astype('float64')
            x = fluid.dygraph.to_variable(np_x)
            y = fluid.dygraph.to_variable(np_y)
            z = paddle.add(x, y, alpha=-0.5)
            np_z = z.numpy()
            print(np_z)  # [1.5, 0.5, 3. ]

    """
    op_type = 'elementwise_add'
    axis = -1
    act = None
    if alpha != 1:
        y = scale(y, scale=alpha)
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)

    original_op_type = 'add'
    if name and out:
        warnings.warn(
            "Both name and out parameters have been set in paddle.tensor.%s, only out will take effect to specify the result storage. "
            "You can discard either one to solve this warning." %
            original_op_type,
            category=UserWarning,
            stacklevel=2)
    return _elementwise_op(LayerHelper(op_type, **locals()))


def div(x, y, out=None, name=None):
    """
Examples:

    .. code-block:: python

        import paddle
        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
            }

        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
        z = paddle.div(x, y)
        # z = x / y

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # [2., 0.6, 2.]


    .. code-block:: python

        import paddle
        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((4, 5)).astype('float32')
            }

        x = fluid.data(name="x", shape=[2, 3, 4, 5], dtype='float32')
        y = fluid.data(name="y", shape=[4, 5], dtype='float32')
        z = paddle.div(x, y, name='z')
        # z = x / y

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value[0])
        print(z_value[0].shape) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle
        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }

        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
        output = fluid.data(name="output", shape=[2,3,4,5], dtype="float32")
        z = paddle.div(x, y, out=output)
        # z = x / y

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value[0])
        print(z_value[0].shape) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle
        import paddle.fluid as fluid
        import numpy as np

        with fluid.dygraph.guard(fluid.CPUPlace()):
            np_x = np.array([2, 3, 4]).astype('float64')
            np_y = np.array([1, 5, 2]).astype('float64')
            x = fluid.dygraph.to_variable(np_x)
            y = fluid.dygraph.to_variable(np_y)
            z = paddle.div(x, y)
            np_z = z.numpy()
            print(np_z)  # [2., 0.6, 2.]

    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)

    original_op_type = 'div'
    if name and out:
        warnings.warn(
            "Both name and out parameters have been set in paddle.tensor.%s, only out will take effect to specify the result storage. "
            "You can discard either one to solve this warning." %
            original_op_type,
            category=UserWarning,
            stacklevel=2)
    return _elementwise_op(LayerHelper(op_type, **locals()))


for func in [
        add,
        div,
]:
    proto_dict = {'add': 'elementwise_add', 'div': 'elementwise_div'}
    op_proto = OpProtoHolder.instance().get_op_proto(proto_dict[func.__name__])
    if func.__name__ in ['add']:
        additional_args_lines = [
            "alpha (int|float, optional): The alpha factor of the input. Default is 1. If alpha is not 1, the equation becomes Out = X + alpha * Y.",
            "out (Variable, optinal): The Variable that stores results of the operation. Default is None. If out is None, \
            a new Variable will be created to store the results."
                                                                 ,
            "name (string, optional): Name of the output. \
            Default is None. It's used to print debug info for developers. Details: \
            :ref:`api_guide_Name` "
        ]
    else:
        additional_args_lines = [
            "out (Variable, optinal): The Variable that stores results of the operation. If out is None, \
            a new Variable will be created to store the results."
                                                                 ,
            "name (string, optional): Name of the output. \
            Default is None. It's used to print debug info for developers. Details: \
            :ref:`api_guide_Name` "
        ]

    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=additional_args_lines,
        skip_attrs_set={"x_data_format", "y_data_format", "axis"
                        }) + """\n""" + str(func.__doc__)
653

654

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
def sum(input, dim=None, dtype=None, keep_dim=False, name=None):
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
        dtype(str, optional): The dtype of output tensor. The default value is None, the dtype 
            of output is the same as input tensor.
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.

    Raises:
        ValueError, the :attr:`dtype` must be float64 or int64.
    
    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
            out1 = paddle.sum(x)  # [3.5]
            out2 = paddle.sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, dim=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]

            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
            out5 = paddle.sum(y, dim=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, dim=[0, 1]) # [16, 20]

    """
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    attrs = {
        'dim': dim if dim != None and dim != [] else [0],
        'keep_dim': keep_dim,
        'reduce_all': True if dim == None or dim == [] else False,
    }
    dtype_flag = False
    if dtype is not None:
        if dtype in ['float64', 'int64']:
            if (convert_dtype(input.dtype) == "float32" and dtype == "float64") or \
               (convert_dtype(input.dtype) == "int32" and dtype == "int64"):
                attrs.update({
                    'in_dtype': input.dtype,
                    'out_dtype': convert_np_dtype_to_dtype_(dtype)
                })
                dtype_flag = True
        else:
            raise ValueError(
                "The value of 'dtype' in sum op must be float64, int64, but received of {}".
                format(dtype))

    if in_dygraph_mode():
        reduce_all = True if dim == None or dim == [] else False
        dim = dim if dim != None and dim != [] else [0]
        if dtype_flag:
            return core.ops.reduce_sum(input, 'dim', dim, 'keep_dim', keep_dim,
                                       'reduce_all', reduce_all, 'in_dtype',
                                       input.dtype, 'out_dtype',
                                       convert_np_dtype_to_dtype_(dtype))
        else:
            return core.ops.reduce_sum(input, 'dim', dim, 'keep_dim', keep_dim,
                                       'reduce_all', reduce_all)
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64', 'int32', 'int64'], 'reduce_sum')
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_(dtype))
    else:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs=attrs)
    return out
754

755

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
@templatedoc(op_type="sum")
def elementwise_sum(inputs, name=None):
    """
    ${comment}
    
    Case 1:
    ::
        Input:
            Input. Shape = [2, 3]
            Input = [[1, 2, 3],
                     [4, 5, 6]]

        Output:
            The output. Shape = [2, 3]
            Output = [[1, 2, 3],
                      [4, 5, 6]]

    Case 2:
    ::
        Input:
            First input:
            Input1. Shape = [2, 3]
            Input1 = [[1, 2, 3],
                      [4, 5, 6]]

        The second input:
            Input2. Shape = [2, 3]
            Input2 = [[7, 8, 9],
                      [10, 11, 12]]

        Output:
            The output. Shape = [2, 3]
            Output = [[8, 10, 12],
                      [14, 16, 18]]

    Args:
        inputs (Variable|list(Variable)):  A Varaible list. The shape and data type of the list elementsshould be consistent. 
            Variable can be multi-dimensional Tensoror LoDTensor, and data types can be: float32, float64, int32, int64. 
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Variable: the sum of input :math:`inputs` . its shape and data types are consistent with :math:`inputs` . 

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid

            input0 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=5)
            input1 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=3)
            sum = paddle.elementwise_sum([input0, input1])

            # You can print out 'sum' via executor.
            out = fluid.layers.Print(sum, message="the sum of input0 and input1: ")
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_main_program())

            # The printed result is:
            # 1570701754	the sum of input0 and input1: 	The place is:CPUPlace
            # Tensor[elementwise_sum_0.tmp_0]
            #    shape: [2,3,]
            #    dtype: l
            #    data: 8,8,8,8,8,8,

            # the sum of input0 and input1 is 2-D Tensor with shape [2,3].
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
    """

    helper = LayerHelper('elementwise_sum', **locals())
830 831 832 833 834 835 836 837 838 839 840
    check_type(inputs, 'inputs', (Variable, tuple, list), 'elementwise_sum')
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
                   ['float32', 'float64', 'int32', 'int64'], 'elementwise_sum')
    else:
        check_variable_and_dtype(inputs, "inputs", \
                ['float32', 'float64', 'int32', 'int64'], 'elementwise_sum')


841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


def mm(input, mat2, out=None, name=None):
    """
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        mat2 (Variable): The input variable which is a Tensor or LoDTensor.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Variable: The product Tensor (or LoDTensor) variable.

    Examples:
        .. code-block:: python

            # Examples to clarify shapes of the inputs and output
            # x: [B, ..., M, K], mat2: [B, ..., K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, ..., M, N]

            # x: [B, M, K], mat2: [B, K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, M, N]

            # x: [B, M, K], mat2: [K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, M, N]

            # x: [M, K], mat2: [K, N]
            # fluid.layers.matmul(x, mat2)  # out: [M, N]

            # x: [B, M, K], mat2: [K]
            # fluid.layers.matmul(x, mat2)  # out: [B, M]

            # x: [K], mat2: [K]
            # fluid.layers.matmul(x, mat2)  # out: [1]

            import paddle
            import paddle.fluid as fluid
            x = fluid.data(name='x', shape=[2, 3], dtype='float32')
            mat2 = fluid.data(name='mat2', shape=[3, 2], dtype='float32')
            out = paddle.mm(x, mat2) # out shape is [2, 2]
    """
    if in_dygraph_mode():
        return core.ops.matmul(input, mat2)

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='matmul', inputs={'X': input,
                               'Y': mat2}, outputs={'Out': out})
    return out
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010


def addmm(input, x, y, alpha=1.0, beta=1.0, name=None):
    """
    **addmm**

    This operator is used to perform matrix multiplication for input $x$ and $y$.
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
        input (Variable): The input Tensor/LoDTensor to be added to the final result.
        x (Variable): The first input Tensor/LoDTensor for matrix multiplication.
        y (Variable): The second input Tensor/LoDTensor for matrix multiplication.
        alpha (float): Coefficient of $x*y$.
        beta (float): Coefficient of $input$.
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.

    Returns:
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of addmm op.

    Examples:
        ..  code-block:: python

            import numpy as np
            import paddle
            import paddle.fluid as fluid

            input = fluid.data(name='input', shape=[2, 2], dtype='float32')
            x = fluid.data(name='x', shape=[2, 2], dtype='float32')
            y = fluid.data(name='y', shape=[2, 2], dtype='float32')
            out = paddle.addmm( input=input, x=x, y=y, alpha=5.0, beta=0.5 )

            data_x = np.ones((2, 2)).astype(np.float32)
            data_y = np.ones((2, 2)).astype(np.float32)
            data_input = np.ones((2, 2)).astype(np.float32)

            place =  fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
            exe = fluid.Executor(place)
            results = exe.run(fluid.default_main_program(), 
                              fetch_list=[out], feed={"input": data_input, 'x': data_x, "y": data_y})
            print( np.array(results[0]) )
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
    inputs = {'Input': input, "X": x, "Y": y}
    attrs = {'Alpha': alpha, 'Beta': beta}

    helper = LayerHelper("addmm", **locals())
    check_variable_and_dtype(x, 'Input', ['float32', 'float64'], 'addmm')
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064


def logsumexp(x, dim=None, keepdim=False, out=None, name=None):
    """
This operator calculates the log of the sum of exponentials of the input Tensor.

.. math::
   logsumexp(x) = \log\sum exp(x)


Parameters:
   x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64.
   dim (list|int, optional): The dimensions along which the sum is performed. If :attr:`None`, 
     sum all elements of :attr:`input` and return a Tensor variable with a single element, 
     otherwise must be in the range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
     the dimension to reduce is :math:`rank + dim[i]`.
   keep_dim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. 
     The result tensor will have one fewer dimension than the :attr:`input` unless :attr:`keep_dim` 
     is true, default value is False.
   name (str, optional): The default value is None.  Normally there is no need for user to 
     set this property.  For more information, please refer to :ref:`api_guide_Name`


Examples:

.. code-block:: python

    import paddle
    import paddle.fluid as fluid
    import numpy as np
    
    with fluid.dygraph.guard():
      np_x = np.random.uniform(0.1, 1, [10]).astype(np.float32)
      x = fluid.dygraph.to_variable(np_x)
      print(paddle.logsumexp(x).numpy())


    """
    op_type = 'logsumexp'
    assert x is not None, 'x cannot be None in {}'.format(op_type)

    # reduce_sum does not support float16
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], op_type)

    exp_out = layers.exp(x)
    sum_out = layers.reduce_sum(exp_out, dim, keepdim)

    if out is not None:
        check_variable_and_dtype(out, 'out', [x.dtype], op_type)
        helper = LayerHelper(op_type, **locals())
        helper.append_op(type="log", inputs={"X": sum_out}, outputs={"Out": out})
        return out

    return layers.log(sum_out, name)
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257


def max(input, dim=None, keep_dim=False, out=None, name=None):
    """
    Computes the maximum of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimension along which the maximum is computed.
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Variable: Tensor, results of maximum on the specified dim of input tensor,
        it's data type is the same as input's Tensor.

    Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid
            
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
            paddle.max(x)  # [0.9]
            paddle.max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            paddle.max(x, dim=-1)  # [0.9, 0.7]
            paddle.max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the corresponding output tensor.
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
            paddle.max(y, dim=[1, 2]) # [4.0, 8.0]
            paddle.max(y, dim=[0, 1]) # [7.0, 8.0]
    """

    helper = LayerHelper('max', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]

    check_variable_and_dtype(
        input, 'input', ['float32', 'float64', 'int32', 'int64'], 'max')

    reduce_all = True if dim == None or dim == [] else False
    dim = dim if dim != None and dim != [] else [0]

    if in_dygraph_mode():
        return core.ops.reduce_max(input, 'dim', dim, 'keep_dim', keep_dim,
                                   'reduce_all', reduce_all)
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim,
            'keep_dim': keep_dim,
            'reduce_all': reduce_all
        })
    return out


def min(input, dim=None, keep_dim=False, out=None, name=None):
    """
    Computes the minimum of tensor elements over the given dimension.
    Args:
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the minimum is computed.
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
        Variable: Tensor, result of minimum on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
    Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
            paddle.min(x)  # [0.1]
            paddle.min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            paddle.min(x, dim=-1)  # [0.2, 0.1]
            paddle.min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the corresponding output tensor.
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
            paddle.min(y, dim=[1, 2]) # [1.0, 5.0]
            paddle.min(y, dim=[0, 1]) # [1.0, 2.0]
    """

    helper = LayerHelper('min', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]

    check_variable_and_dtype(
        input, 'input', ['float32', 'float64', 'int32', 'int64'], 'max')

    reduce_all = True if dim == None or dim == [] else False
    dim = dim if dim != None and dim != [] else [0]

    if in_dygraph_mode():
        return core.ops.reduce_min(input, 'dim', dim, 'keep_dim', keep_dim,
                                   'reduce_all', reduce_all)
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim,
            'keep_dim': keep_dim,
            'reduce_all': reduce_all
        })
    return out


def log1p(x, out=None, name=None):
    """
    Calculates the natural log of the given input tensor, element-wise.
    .. math::
        Out = \\ln(x+1)
    Args:
        x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
        Variable: The natural log of the input LoDTensor or Tensor computed element-wise.
    Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid
            import numpy as np
            # Graph Organizing
            x = fluid.data(name="x", shape=[2,1], dtype="float32")
            res = paddle.log1p(x)
            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())
            # Execute
            x_i = np.array([[0], [1]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[0.], [0.6931472]]
    """

    if in_dygraph_mode():
        return core.ops.log1p(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    if out is None:
        out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out