tester_helper.h 33.3 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gtest/gtest.h>
Y
Yan Chunwei 已提交
18

L
luotao1 已提交
19
#include <algorithm>
L
luotao1 已提交
20
#include <memory>
T
Tao Luo 已提交
21
#include <string>
L
luotao1 已提交
22
#include <thread>  // NOLINT
L
luotao1 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <vector>
Y
Yiqun Liu 已提交
25 26 27
#ifdef WITH_GPERFTOOLS
#include <gperftools/profiler.h>
#endif
L
luotao1 已提交
28
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
29
#include "paddle/fluid/framework/scope.h"
L
luotao1 已提交
30 31 32
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
33
#include "paddle/fluid/inference/api/helper.h"
Y
Yan Chunwei 已提交
34
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
35
#include "paddle/fluid/inference/tests/api/config_printer.h"
T
Tao Luo 已提交
36
#include "paddle/fluid/inference/tests/test_helper.h"
N
nhzlx 已提交
37
#include "paddle/fluid/inference/utils/benchmark.h"
L
luotao1 已提交
38 39
#include "paddle/fluid/platform/profiler.h"

N
nhzlx 已提交
40
DEFINE_string(model_name, "", "model name");
L
luotao1 已提交
41
DEFINE_string(infer_model, "", "model path");
42 43
DEFINE_string(fp32_model, "", "FP32 model path");
DEFINE_string(int8_model, "", "INT8 model path");
L
luotao1 已提交
44
DEFINE_string(infer_data, "", "data file");
T
Tao Luo 已提交
45
DEFINE_string(refer_result, "", "reference result for comparison");
46
DEFINE_int32(batch_size, 1, "batch size");
47
DEFINE_bool(ernie_large, false, "Test ernie large");
48 49
DEFINE_bool(with_accuracy_layer, true,
            "Calculate the accuracy while label is in the input");
50 51
DEFINE_bool(enable_fp32, true, "Enable FP32 type prediction");
DEFINE_bool(enable_int8, true, "Enable INT8 type prediction");
52 53 54
DEFINE_int32(warmup_batch_size, 100, "batch size for quantization warmup");
// setting iterations to 0 means processing the whole dataset
DEFINE_int32(iterations, 0, "number of batches to process");
L
luotao1 已提交
55 56 57
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
T
Tao Luo 已提交
58 59
DEFINE_bool(use_analysis, true,
            "Running the inference program in analysis mode.");
N
nhzlx 已提交
60 61
DEFINE_bool(record_benchmark, false,
            "Record benchmark after profiling the model");
L
luotao1 已提交
62
DEFINE_double(accuracy, 1e-3, "Result Accuracy.");
63
DEFINE_double(quantized_accuracy, 1e-2, "Result Quantized Accuracy.");
L
luotao1 已提交
64
DEFINE_bool(zero_copy, false, "Use ZeroCopy to speedup Feed/Fetch.");
65 66 67
DEFINE_bool(warmup, false,
            "Use warmup to calculate elapsed_time more accurately. "
            "To reduce CI time, it sets false in default.");
68
DEFINE_int32(warmup_iters, 1, "Number of batches to process during warmup.");
L
luotao1 已提交
69

70 71
DEFINE_bool(enable_profile, false, "Turn on profiler for fluid");
DEFINE_int32(cpu_num_threads, 1, "Number of threads for each paddle instance.");
72

L
luotao1 已提交
73 74 75
namespace paddle {
namespace inference {

76 77
using paddle::framework::proto::VarType;

78 79 80 81 82 83 84 85 86 87 88 89 90
template <typename T>
constexpr paddle::PaddleDType GetPaddleDType();

template <>
constexpr paddle::PaddleDType GetPaddleDType<int64_t>() {
  return paddle::PaddleDType::INT64;
}

template <>
constexpr paddle::PaddleDType GetPaddleDType<float>() {
  return paddle::PaddleDType::FLOAT32;
}

91
void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
92
  const auto *analysis_config =
93
      reinterpret_cast<const AnalysisConfig *>(config);
94
  if (use_analysis) {
95
    LOG(INFO) << *analysis_config;
96 97
    return;
  }
98
  LOG(INFO) << analysis_config->ToNativeConfig();
99
}
Y
Yan Chunwei 已提交
100

101 102 103 104 105 106 107 108
void CheckError(float data_ref, float data) {
  if (std::abs(data_ref) > 1) {
    CHECK_LE(std::abs((data_ref - data) / data_ref), FLAGS_accuracy);
  } else {
    CHECK_LE(std::abs(data_ref - data), FLAGS_accuracy);
  }
}

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
class Barrier {
 public:
  explicit Barrier(std::size_t count) : _count(count) {}
  void Wait() {
    std::unique_lock<std::mutex> lock(_mutex);
    if (--_count) {
      _cv.wait(lock, [this] { return _count == 0; });
    } else {
      _cv.notify_all();
    }
  }

 private:
  std::mutex _mutex;
  std::condition_variable _cv;
  std::size_t _count;
};

127
// Compare result between two PaddleTensor
L
luotao1 已提交
128
void CompareResult(const std::vector<PaddleTensor> &outputs,
T
tensor-tang 已提交
129
                   const std::vector<PaddleTensor> &ref_outputs) {
T
Tao Luo 已提交
130
  EXPECT_GT(outputs.size(), 0UL);
T
tensor-tang 已提交
131
  EXPECT_EQ(outputs.size(), ref_outputs.size());
L
luotao1 已提交
132 133
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
T
tensor-tang 已提交
134
    auto &ref_out = ref_outputs[i];
135 136
    size_t size = VecReduceToInt(out.shape);
    size_t ref_size = VecReduceToInt(ref_out.shape);
137
    EXPECT_GT(size, 0UL);
T
tensor-tang 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    EXPECT_EQ(size, ref_size);
    EXPECT_EQ(out.dtype, ref_out.dtype);
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = static_cast<float *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
153
          CheckError(pdata_ref[j], pdata[j]);
T
tensor-tang 已提交
154 155 156
        }
        break;
      }
157 158 159 160 161 162 163 164
      case PaddleDType::INT32: {
        int32_t *pdata = static_cast<int32_t *>(out.data.data());
        int32_t *pdata_ref = static_cast<int32_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
165 166 167 168 169 170 171 172
      case PaddleDType::UINT8: {
        uint8_t *pdata = static_cast<uint8_t *>(out.data.data());
        uint8_t *pdata_ref = static_cast<uint8_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
L
luotao1 已提交
173 174 175 176
    }
  }
}

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
// Compare result between a PaddleTensor and a ZeroCopyTensor
void CompareResult(const std::vector<PaddleTensor> &outputs,
                   const std::vector<ZeroCopyTensor> &ref_outputs) {
  EXPECT_GT(outputs.size(), 0UL);
  EXPECT_EQ(outputs.size(), ref_outputs.size());
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
    auto &ref_out = ref_outputs[i];
    size_t size = VecReduceToInt(out.shape);
    EXPECT_GT(size, 0UL);
    int ref_size = 0;  // this is the number of elements not memory size
    PaddlePlace place;
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = ref_out.data<int64_t>(&place, &ref_size);
193
        EXPECT_EQ(size, static_cast<size_t>(ref_size));
194 195 196 197 198 199 200 201
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = ref_out.data<float>(&place, &ref_size);
202
        EXPECT_EQ(size, static_cast<size_t>(ref_size));
203
        for (size_t j = 0; j < size; ++j) {
204
          CheckError(pdata_ref[j], pdata[j]);
205 206 207
        }
        break;
      }
L
luotao1 已提交
208 209 210
      case PaddleDType::INT32: {
        int32_t *pdata = static_cast<int32_t *>(out.data.data());
        int32_t *pdata_ref = ref_out.data<int32_t>(&place, &ref_size);
211
        EXPECT_EQ(size, static_cast<size_t>(ref_size));
L
luotao1 已提交
212 213 214 215 216
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
217 218 219
      case PaddleDType::UINT8: {
        uint8_t *pdata = static_cast<uint8_t *>(out.data.data());
        uint8_t *pdata_ref = ref_out.data<uint8_t>(&place, &ref_size);
220
        EXPECT_EQ(size, static_cast<size_t>(ref_size));
221 222 223 224 225
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
226 227 228 229
    }
  }
}

230
std::unique_ptr<PaddlePredictor> CreateTestPredictor(
231
    const PaddlePredictor::Config *config, bool use_analysis = true) {
232
  const auto *analysis_config =
233
      reinterpret_cast<const AnalysisConfig *>(config);
T
Tao Luo 已提交
234
  if (use_analysis) {
235
    return CreatePaddlePredictor<AnalysisConfig>(*analysis_config);
T
Tao Luo 已提交
236
  }
237 238
  auto native_config = analysis_config->ToNativeConfig();
  return CreatePaddlePredictor<NativeConfig>(native_config);
T
Tao Luo 已提交
239 240
}

241
size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); }
T
Tao Luo 已提交
242

243
std::unordered_map<std::string, int> GetFuseStatis(PaddlePredictor *predictor,
T
Tao Luo 已提交
244
                                                   int *num_ops) {
245
  std::unordered_map<std::string, int> res;
246
  auto *analysis_predictor = static_cast<AnalysisPredictor *>(predictor);
247 248 249 250 251 252
  auto *fusion_status =
      analysis_predictor->analysis_argument().fusion_statis_ptr();
  if (!fusion_status) {
    return res;
  }
  for (auto &item : *fusion_status) {
T
Tao Luo 已提交
253 254 255 256
    LOG(INFO) << "fused " << item.first << " " << item.second;
  }
  int num = 0;
  for (auto &node :
257 258
       analysis_predictor->analysis_argument().main_graph().Nodes()) {
    if (node->IsOp()) {
T
Tao Luo 已提交
259 260 261 262
      ++num;
    }
  }
  *num_ops = num;
263
  return *fusion_status;
T
Tao Luo 已提交
264 265
}

T
Tao Luo 已提交
266
void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
267 268
                       const std::string &dirname, bool is_combined = true,
                       std::string model_filename = "model",
T
tensor-tang 已提交
269
                       std::string params_filename = "params",
N
nhzlx 已提交
270 271
                       const std::vector<std::string> *feed_names = nullptr,
                       const int continuous_inuput_index = 0) {
T
Tao Luo 已提交
272
  // Set fake_image_data
273 274 275 276 277
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0,
                    platform::errors::InvalidArgument(
                        "In SetFakeImageInput, expected test_all_data = false, "
                        "but now test_all_data=",
                        FLAGS_test_all_data));
278 279 280 281 282 283 284 285 286 287 288
  std::vector<std::vector<int64_t>> feed_target_shapes = GetFeedTargetShapes(
      dirname, is_combined, model_filename, params_filename);
  std::ostringstream os;
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    os << "feed target " << i << ": {" << feed_target_shapes[i][0];
    for (size_t j = 1; j < feed_target_shapes[i].size(); ++j) {
      os << ", " << feed_target_shapes[i][j];
    }
    os << "}\n";
  }
  LOG(INFO) << os.str();
T
tensor-tang 已提交
289
  if (feed_names) {
290 291 292 293 294 295 296
    PADDLE_ENFORCE_EQ(
        feed_names->size(), feed_target_shapes.size(),
        platform::errors::InvalidArgument(
            "The size of feeds_names and size of "
            "feed_target_shapes must be equal, but now feeds_names "
            "size is %d and feed_target_shapes size is %d",
            feed_names->size(), feed_target_shapes.size()));
T
tensor-tang 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310
  }
  std::vector<PaddleTensor> input_slots(feed_target_shapes.size());
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    const auto &feed_shape = feed_target_shapes[i];
    auto &input = input_slots[i];
    std::vector<int> shape({FLAGS_batch_size});
    for (size_t s = 1; s < feed_shape.size(); ++s) {
      shape.push_back(static_cast<int>(feed_shape[s]));
    }
    if (feed_names) {
      input.name = (*feed_names)[i];
    }
    input.shape = shape;
    input.dtype = PaddleDType::FLOAT32;
311
    size_t len = std::accumulate(shape.begin(), shape.end(), size_t{1},
T
tensor-tang 已提交
312 313 314 315 316 317
                                 [](int a, int b) { return a * b; });
    input.data.Resize(len * sizeof(float));
    input.lod.assign({{0, static_cast<size_t>(FLAGS_batch_size)}});
    float *input_data = static_cast<float *>(input.data.data());
    // fill input data, for profile easily, do not use random data here.
    for (size_t j = 0; j < len; ++j) {
N
nhzlx 已提交
318 319
      *(input_data + j) =
          static_cast<float>((j + continuous_inuput_index) % len) / len;
T
tensor-tang 已提交
320
    }
T
Tao Luo 已提交
321 322 323 324
  }
  (*inputs).emplace_back(input_slots);
}

325 326 327 328 329 330 331 332 333 334 335 336
void GetInputPerBatch(const std::vector<std::vector<int64_t>> &in,
                      std::vector<std::vector<int64_t>> *out,
                      std::vector<size_t> *lod, size_t batch_iter,
                      size_t batch_end) {
  lod->clear();
  lod->push_back(0);
  for (auto it = in.begin() + batch_iter; it < in.begin() + batch_end; it++) {
    out->push_back(*it);
    lod->push_back(lod->back() + (*it).size());  // calculate lod
  }
}

L
luotao1 已提交
337 338 339 340 341 342 343 344 345 346 347
void ConvertPaddleTensorToZeroCopyTensor(
    PaddlePredictor *predictor, const std::vector<PaddleTensor> &inputs) {
  for (size_t i = 0; i < inputs.size(); i++) {
    auto input = inputs[i];
    auto tensor = predictor->GetInputTensor(input.name);
    tensor->Reshape(input.shape);
    tensor->SetLoD({input.lod});
    if (input.dtype == PaddleDType::INT64) {
      ZeroCopyTensorAssignData<int64_t>(tensor.get(), input.data);
    } else if (input.dtype == PaddleDType::FLOAT32) {
      ZeroCopyTensorAssignData<float>(tensor.get(), input.data);
L
luotao1 已提交
348 349
    } else if (input.dtype == PaddleDType::INT32) {
      ZeroCopyTensorAssignData<int32_t>(tensor.get(), input.data);
350 351
    } else if (input.dtype == PaddleDType::UINT8) {
      ZeroCopyTensorAssignData<uint8_t>(tensor.get(), input.data);
L
luotao1 已提交
352 353 354 355 356
    } else {
      LOG(ERROR) << "unsupported feed type " << input.dtype;
    }
  }
}
357

L
luotao1 已提交
358 359
void PredictionWarmUp(PaddlePredictor *predictor,
                      const std::vector<std::vector<PaddleTensor>> &inputs,
360
                      std::vector<std::vector<PaddleTensor>> *outputs,
361 362
                      int num_threads, int tid,
                      const VarType::Type data_type = VarType::FP32) {
L
luotao1 已提交
363 364 365 366 367
  int batch_size = FLAGS_batch_size;
  LOG(INFO) << "Running thread " << tid << ", warm up run...";
  if (FLAGS_zero_copy) {
    ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[0]);
  }
368 369 370 371
  int iterations = 1;
  if (FLAGS_warmup_iters > 1)
    iterations = std::min(FLAGS_warmup_iters, static_cast<int>(inputs.size()));
  outputs->resize(iterations);
L
luotao1 已提交
372
  Timer warmup_timer;
373
  double elapsed_time = 0;
L
luotao1 已提交
374
  if (!FLAGS_zero_copy) {
375 376 377 378 379
    for (int i = 0; i < iterations; ++i) {
      warmup_timer.tic();
      predictor->Run(inputs[i], &(*outputs)[i], batch_size);
      elapsed_time += warmup_timer.toc();
    }
L
luotao1 已提交
380
  } else {
381 382 383 384 385
    for (int i = 0; i < iterations; ++i) {
      warmup_timer.tic();
      predictor->ZeroCopyRun();
      elapsed_time += warmup_timer.toc();
    }
386
  }
387 388 389
  auto batch_latency = elapsed_time / iterations;
  PrintTime(batch_size, 1, num_threads, tid, batch_latency, iterations,
            data_type);
390
  if (FLAGS_enable_profile) {
L
luotao1 已提交
391 392 393
    paddle::platform::ResetProfiler();
  }
}
394

L
luotao1 已提交
395 396
void PredictionRun(PaddlePredictor *predictor,
                   const std::vector<std::vector<PaddleTensor>> &inputs,
397
                   std::vector<std::vector<PaddleTensor>> *outputs,
398
                   int num_threads, int tid,
399 400
                   const VarType::Type data_type = VarType::FP32,
                   float *sample_latency = nullptr) {
L
luotao1 已提交
401
  int num_times = FLAGS_repeat;
402
  int iterations = inputs.size();  // process the whole dataset ...
403 404
  if (FLAGS_iterations > 0 &&
      FLAGS_iterations < static_cast<int64_t>(inputs.size()))
405 406 407 408 409
    iterations =
        FLAGS_iterations;  // ... unless the number of iterations is set
  outputs->resize(iterations);
  LOG(INFO) << "Thread " << tid << ", number of threads " << num_threads
            << ", run " << num_times << " times...";
L
luotao1 已提交
410 411
  Timer run_timer;
  double elapsed_time = 0;
Y
Yiqun Liu 已提交
412
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
413
  ProfilerStart("paddle_inference.prof");
Y
Yiqun Liu 已提交
414
#endif
415
  int predicted_num = 0;
L
luotao1 已提交
416
  if (!FLAGS_zero_copy) {
417
    for (int i = 0; i < iterations; i++) {
418
      run_timer.tic();
L
luotao1 已提交
419
      for (int j = 0; j < num_times; j++) {
420
        predictor->Run(inputs[i], &(*outputs)[i], FLAGS_batch_size);
421
      }
422 423 424 425 426 427
      elapsed_time += run_timer.toc();

      predicted_num += FLAGS_batch_size;
      if (predicted_num % 100 == 0) {
        LOG(INFO) << predicted_num << " samples";
      }
L
luotao1 已提交
428
    }
L
luotao1 已提交
429
  } else {
430
    for (int i = 0; i < iterations; i++) {
L
luotao1 已提交
431 432 433 434 435 436
      ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[i]);
      run_timer.tic();
      for (int j = 0; j < num_times; j++) {
        predictor->ZeroCopyRun();
      }
      elapsed_time += run_timer.toc();
437 438 439 440 441

      predicted_num += FLAGS_batch_size;
      if (predicted_num % 100 == 0) {
        LOG(INFO) << predicted_num << " samples";
      }
L
luotao1 已提交
442 443
    }
  }
444

Y
Yiqun Liu 已提交
445
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
446
  ProfilerStop();
Y
Yiqun Liu 已提交
447
#endif
N
nhzlx 已提交
448

449 450
  auto batch_latency = elapsed_time / (iterations * num_times);
  PrintTime(FLAGS_batch_size, num_times, num_threads, tid, batch_latency,
451
            iterations, data_type);
452 453 454 455

  if (sample_latency != nullptr)
    *sample_latency = batch_latency / FLAGS_batch_size;

L
luotao1 已提交
456 457 458
  if (FLAGS_record_benchmark) {
    Benchmark benchmark;
    benchmark.SetName(FLAGS_model_name);
459 460
    benchmark.SetBatchSize(FLAGS_batch_size);
    benchmark.SetLatency(batch_latency);
L
luotao1 已提交
461
    benchmark.PersistToFile("benchmark_record.txt");
L
luotao1 已提交
462 463 464
  }
}

L
luotao1 已提交
465 466 467
void TestOneThreadPrediction(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs,
468
    std::vector<std::vector<PaddleTensor>> *outputs, bool use_analysis = true,
469 470
    const VarType::Type data_type = VarType::FP32,
    float *sample_latency = nullptr) {
L
luotao1 已提交
471
  auto predictor = CreateTestPredictor(config, use_analysis);
472
  if (FLAGS_warmup) {
473
    PredictionWarmUp(predictor.get(), inputs, outputs, 1, 0, data_type);
474
  }
475 476
  PredictionRun(predictor.get(), inputs, outputs, 1, 0, data_type,
                sample_latency);
L
luotao1 已提交
477 478
}

L
luotao1 已提交
479
void TestMultiThreadPrediction(
480
    const PaddlePredictor::Config *config,
481
    const std::vector<std::vector<PaddleTensor>> &inputs,
482
    std::vector<std::vector<PaddleTensor>> *outputs, int num_threads,
T
Tao Luo 已提交
483
    bool use_analysis = true) {
L
luotao1 已提交
484
  std::vector<std::thread> threads;
L
luotao1 已提交
485 486 487 488 489
  std::vector<std::unique_ptr<PaddlePredictor>> predictors;
  predictors.emplace_back(CreateTestPredictor(config, use_analysis));
  for (int tid = 1; tid < num_threads; tid++) {
    predictors.emplace_back(predictors.front()->Clone());
  }
490

L
luotao1 已提交
491 492 493 494
  for (int tid = 0; tid < num_threads; ++tid) {
    threads.emplace_back([&, tid]() {
      // Each thread should have local inputs and outputs.
      // The inputs of each thread are all the same.
495
      std::vector<std::vector<PaddleTensor>> outputs_tid;
L
luotao1 已提交
496
      auto &predictor = predictors[tid];
497 498 499 500
      if (FLAGS_warmup) {
        PredictionWarmUp(predictor.get(), inputs, &outputs_tid, num_threads,
                         tid);
      }
501
      PredictionRun(predictor.get(), inputs, &outputs_tid, num_threads, tid);
L
luotao1 已提交
502 503 504 505 506 507 508
    });
  }
  for (int i = 0; i < num_threads; ++i) {
    threads[i].join();
  }
}

509
void TestPrediction(const PaddlePredictor::Config *config,
510
                    const std::vector<std::vector<PaddleTensor>> &inputs,
511 512
                    std::vector<std::vector<PaddleTensor>> *outputs,
                    int num_threads, bool use_analysis = FLAGS_use_analysis) {
513
  PrintConfig(config, use_analysis);
L
luotao1 已提交
514
  if (num_threads == 1) {
T
Tao Luo 已提交
515
    TestOneThreadPrediction(config, inputs, outputs, use_analysis);
L
luotao1 已提交
516
  } else {
T
Tao Luo 已提交
517 518
    TestMultiThreadPrediction(config, inputs, outputs, num_threads,
                              use_analysis);
L
luotao1 已提交
519 520 521
  }
}

522 523
void SummarizeAccuracy(float avg_acc_fp32, float avg_acc_int8,
                       int compared_idx) {
524 525 526 527 528 529 530 531 532 533 534 535 536 537
  PADDLE_ENFORCE_LE(
      compared_idx, 2,
      platform::errors::InvalidArgument(
          "The compared_idx should be <= 2. But received compared_idx = %d. "
          "For top1 accuracy, set compared_idx = 1; For top5 accuracy or mean "
          "Average Precision (mAP), set compared_idx = 2.",
          compared_idx));
  PADDLE_ENFORCE_GE(
      compared_idx, 1,
      platform::errors::InvalidArgument(
          "The compared_idx should be >= 1. But received compared_idx = %d. "
          "For top1 accuracy, set compared_idx = 1; For top5 accuracy or mean "
          "Average Precision (mAP), set compared_idx = 2.",
          compared_idx));
538
  std::string prefix = (compared_idx == 1) ? "top1_accuracy " : "mAP ";
539
  LOG(INFO) << "--- Accuracy summary --- ";
540 541 542 543 544 545 546 547
  LOG(INFO) << "Accepted " << prefix
            << "drop threshold: " << FLAGS_quantized_accuracy
            << ". (condition: (FP32_" << prefix << " - INT8_" << prefix
            << ") <= threshold)";
  LOG(INFO) << "FP32: avg " << prefix << std::fixed << std::setw(6)
            << std::setprecision(4) << avg_acc_fp32;
  LOG(INFO) << "INT8: avg " << prefix << std::fixed << std::setw(6)
            << std::setprecision(4) << avg_acc_int8;
548 549
}

550 551 552 553 554 555 556 557
void SummarizePerformance(const char *title, float sample) {
  CHECK_GT(sample, 0.0);
  auto throughput = 1000.0 / sample;
  LOG(INFO) << title << ": avg fps: " << std::fixed << std::setw(6)
            << std::setprecision(4) << throughput << ", avg latency: " << sample
            << " ms";
}

558 559
void SummarizePerformance(float sample_latency_fp32,
                          float sample_latency_int8) {
560 561
  if (FLAGS_enable_fp32) SummarizePerformance("FP32", sample_latency_fp32);
  if (FLAGS_enable_int8) SummarizePerformance("INT8", sample_latency_int8);
562 563
}

564 565
float CompareAccuracyOne(
    const std::vector<std::vector<PaddleTensor>> &output_slots,
566
    int compared_idx) {
567 568 569 570
  PADDLE_ENFORCE_GT(output_slots.size(), 0,
                    platform::errors::InvalidArgument(
                        "The accuracy vector is empty. The accuracy vector "
                        "size should be bigger than 0"));
571

572 573 574 575 576 577 578
  float total_accs{0};

  for (size_t i = 0; i < output_slots.size(); ++i) {
    switch (compared_idx) {
      case 1:
        PADDLE_ENFORCE_GE(
            output_slots[i].size(), 2UL,
579 580 581 582
            platform::errors::InvalidArgument(
                "To achieve top 1 accuracy, output_slots size "
                "must be bigger than or equal to 2, but now the size is %d",
                output_slots[i].size()));
583 584 585
        break;
      case 2:
        PADDLE_ENFORCE_GE(
586 587 588 589 590 591
            output_slots[i].size(), 3UL,
            platform::errors::InvalidArgument(
                "To achieve top 5 accuracy or mean Average "
                "Precision (mAP), output_slots size must be "
                "bigger than or equal to 3, but now the size is %d",
                output_slots[i].size()));
592 593 594 595
        break;
      default:
        throw std::invalid_argument(
            "CompareAccuracy: compared_idx is out of range.");
596 597
    }

598
    if (output_slots[i][compared_idx].lod.size() > 0)
599
      throw std::invalid_argument("CompareAccuracy: output has nonempty LoD.");
600 601

    if (output_slots[i][compared_idx].dtype != paddle::PaddleDType::FLOAT32)
602
      throw std::invalid_argument(
603
          "CompareAccuracy: output is of a wrong type.");
604 605 606

    total_accs +=
        *static_cast<float *>(output_slots[i][compared_idx].data.data());
607
  }
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628

  return total_accs / output_slots.size();
}

void CompareAccuracy(
    const std::vector<std::vector<PaddleTensor>> &output_slots_quant,
    const std::vector<std::vector<PaddleTensor>> &output_slots_ref,
    int compared_idx) {
  if ((FLAGS_enable_fp32 && FLAGS_enable_int8) &&
      (output_slots_quant.size() == 0 || output_slots_ref.size()) == 0)
    throw std::invalid_argument(
        "CompareAccuracy: output_slots vector is empty.");

  float avg_acc_quant = 0.0;
  float avg_acc_ref = 0.0;

  if (FLAGS_enable_int8)
    avg_acc_quant = CompareAccuracyOne(output_slots_quant, compared_idx);

  if (FLAGS_enable_fp32)
    avg_acc_ref = CompareAccuracyOne(output_slots_ref, compared_idx);
629

630
  SummarizeAccuracy(avg_acc_ref, avg_acc_quant, compared_idx);
631 632 633 634 635 636 637

  if (FLAGS_enable_fp32) CHECK_GT(avg_acc_ref, 0.0);

  if (FLAGS_enable_int8) CHECK_GT(avg_acc_quant, 0.0);

  if (FLAGS_enable_fp32 && FLAGS_enable_int8)
    CHECK_LE(avg_acc_ref - avg_acc_quant, FLAGS_quantized_accuracy);
638 639
}

L
luotao1 已提交
640 641 642 643 644 645 646 647 648
void CompareDeterministic(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  auto predictor = CreateTestPredictor(config, FLAGS_use_analysis);

  std::vector<PaddleTensor> warmup_outputs, outputs;
  // run num_times to Compare Deterministic Result.
649 650 651 652
  for (size_t j = 0; j < inputs.size(); j++) {
    // warmup run
    predictor->Run(inputs[j], &warmup_outputs, batch_size);
    for (int i = 0; i < num_times; i++) {
L
luotao1 已提交
653 654 655 656 657 658
      predictor->Run(inputs[j], &outputs, batch_size);
      CompareResult(outputs, warmup_outputs);
    }
  }
}

T
Tao Luo 已提交
659
void CompareNativeAndAnalysis(
660
    const PaddlePredictor::Config *config,
661
    const std::vector<std::vector<PaddleTensor>> &inputs) {
662
  PrintConfig(config, true);
663
  std::vector<std::vector<PaddleTensor>> native_outputs, analysis_outputs;
664
  TestOneThreadPrediction(config, inputs, &native_outputs, false);
T
Tao Luo 已提交
665
  TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
666 667 668 669 670 671 672 673
  PADDLE_ENFORCE_GT(native_outputs.size(), 0,
                    platform::errors::InvalidArgument(
                        "The native outputs is empty. The native outputs "
                        "vector size must be bigger than 0"));
  PADDLE_ENFORCE_GT(analysis_outputs.size(), 0,
                    platform::errors::InvalidArgument(
                        "The analysis outputs is empty. The analysis outputs "
                        "vector size must be bigger than 0"));
674
  CompareResult(analysis_outputs.back(), native_outputs.back());
T
Tao Luo 已提交
675 676
}

677
void CompareQuantizedAndAnalysis(
678
    const AnalysisConfig *config, const AnalysisConfig *qconfig,
679 680
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const int compared_idx = 1) {
681 682 683 684 685 686
  PADDLE_ENFORCE_EQ(
      inputs[0][0].shape[0], FLAGS_batch_size,
      platform::errors::InvalidArgument(
          "Input data has to be packed batch by batch. The batchsize is set to "
          "%d, but the real input is packed with batchsize = %d",
          FLAGS_batch_size, inputs[0][0].shape[0]));
687 688 689 690 691 692 693
  LOG(INFO) << "FP32 & INT8 prediction run: batch_size " << FLAGS_batch_size
            << ", warmup batch size " << FLAGS_warmup_batch_size << ".";

  LOG(INFO) << "--- FP32 prediction start ---";
  auto *cfg = reinterpret_cast<const PaddlePredictor::Config *>(config);
  PrintConfig(cfg, true);
  std::vector<std::vector<PaddleTensor>> analysis_outputs;
694
  float sample_latency_fp32{-1};
695 696 697 698 699

  if (FLAGS_enable_fp32) {
    TestOneThreadPrediction(cfg, inputs, &analysis_outputs, true, VarType::FP32,
                            &sample_latency_fp32);
  }
700 701 702 703 704

  LOG(INFO) << "--- INT8 prediction start ---";
  auto *qcfg = reinterpret_cast<const PaddlePredictor::Config *>(qconfig);
  PrintConfig(qcfg, true);
  std::vector<std::vector<PaddleTensor>> quantized_outputs;
705
  float sample_latency_int8{-1};
706

707 708 709 710
  if (FLAGS_enable_int8) {
    TestOneThreadPrediction(qcfg, inputs, &quantized_outputs, true,
                            VarType::INT8, &sample_latency_int8);
  }
711
  SummarizePerformance(sample_latency_fp32, sample_latency_int8);
712

713
  CompareAccuracy(quantized_outputs, analysis_outputs, compared_idx);
714 715
}

716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
void CompareAnalysisAndAnalysis(
    const AnalysisConfig *config1, const AnalysisConfig *config2,
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const bool with_accuracy_layer = FLAGS_with_accuracy_layer,
    const int compared_idx = 1) {
  PADDLE_ENFORCE_EQ(
      inputs[0][0].shape[0], FLAGS_batch_size,
      platform::errors::InvalidArgument(
          "Input data has to be packed batch by batch. The batchsize is set to "
          "%d, but the real input is packed with batchsize = %d",
          FLAGS_batch_size, inputs[0][0].shape[0]));

  LOG(INFO) << "FP32 & INT8 prediction run: batch_size " << FLAGS_batch_size
            << ", warmup batch size " << FLAGS_warmup_batch_size << ".";

  LOG(INFO) << "--- FP32 prediction start ---";
  auto *cfg1 = reinterpret_cast<const PaddlePredictor::Config *>(config1);
  PrintConfig(cfg1, true);
  std::vector<std::vector<PaddleTensor>> analysis_outputs;
  float sample_latency_fp32{-1};

  if (FLAGS_enable_fp32) {
    TestOneThreadPrediction(cfg1, inputs, &analysis_outputs, true,
                            VarType::FP32, &sample_latency_fp32);
  }

  LOG(INFO) << "--- INT8 prediction start ---";
  auto *cfg2 = reinterpret_cast<const PaddlePredictor::Config *>(config2);
  PrintConfig(cfg2, true);
  std::vector<std::vector<PaddleTensor>> int8_outputs;
  float sample_latency_int8{-1};

  if (FLAGS_enable_int8) {
    TestOneThreadPrediction(cfg2, inputs, &int8_outputs, true, VarType::INT8,
                            &sample_latency_int8);
  }
  SummarizePerformance(sample_latency_fp32, sample_latency_int8);
  if (with_accuracy_layer) {
    CompareAccuracy(int8_outputs, analysis_outputs, compared_idx);
  }
}

N
nhzlx 已提交
758 759 760 761 762 763 764 765 766 767
void CompareNativeAndAnalysis(
    PaddlePredictor *native_pred, PaddlePredictor *analysis_pred,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
  native_pred->Run(inputs[0], &native_outputs, batch_size);
  analysis_pred->Run(inputs[0], &analysis_outputs, batch_size);
  CompareResult(analysis_outputs, native_outputs);
}

768
void CompareAnalysisAndZeroCopy(
769
    PaddlePredictor::Config *config, PaddlePredictor::Config *config1,
770 771 772 773 774 775 776 777 778
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const std::vector<std::string> &outputs_name) {
  int batch_size = FLAGS_batch_size;
  // analysis
  std::vector<PaddleTensor> analysis_outputs;
  auto predictor = CreateTestPredictor(config, true);
  predictor->Run(inputs[0], &analysis_outputs, batch_size);
  // analysis + zero_copy
  std::vector<ZeroCopyTensor> zerocopy_outputs;
779 780
  reinterpret_cast<AnalysisConfig *>(config1)->SwitchUseFeedFetchOps(false);
  predictor = CreateTestPredictor(config1, true);
781 782 783 784 785 786
  ConvertPaddleTensorToZeroCopyTensor(predictor.get(), inputs[0]);
  predictor->ZeroCopyRun();
  for (size_t i = 0; i < outputs_name.size(); i++) {
    ZeroCopyTensor zerocopy_output =
        *predictor->GetOutputTensor(outputs_name[i]).get();
    zerocopy_outputs.emplace_back(zerocopy_output);
L
luotao1 已提交
787
    LOG(INFO) << "ZeroCopy output: " << DescribeZeroCopyTensor(zerocopy_output);
788 789 790 791 792
  }
  // compare
  CompareResult(analysis_outputs, zerocopy_outputs);
}

793 794 795 796 797 798 799
void SaveOptimModel(AnalysisConfig *cfg, const std::string &dstPath) {
  auto predictor = CreateTestPredictor(
      reinterpret_cast<const PaddlePredictor::Config *>(cfg),
      FLAGS_use_analysis);
  (static_cast<AnalysisPredictor *>(predictor.get()))->SaveOptimModel(dstPath);
}

L
luotao1 已提交
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
template <typename T>
std::string LoDTensorSummary(const framework::LoDTensor &tensor) {
  std::stringstream ss;
  ss << "\n---- tensor ---" << '\n';
  ss << "lod: [";
  for (const auto &level : tensor.lod()) {
    ss << "[ ";
    for (auto i : level) {
      ss << i << ", ";
    }
    ss << "]";
  }
  ss << "]\n";

  ss << "shape: [";
  int size = 1;
  for (int i = 0; i < tensor.dims().size(); i++) {
    int dim = tensor.dims()[i];
    ss << dim << ", ";
    size *= dim;
  }
  ss << "]\n";

  ss << "data: ";
  for (int i = 0; i < std::min(20, size); i++) {
    ss << tensor.data<T>()[i] << " ";
  }
  ss << "\n";

  return ss.str();
}

static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    auto &al = a[i];
    auto &bl = b[i];
    if (al.size() != bl.size()) {
      LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(),
                                    bl.size());
      return false;
    }
  }
  return true;
}

static bool CompareShape(const std::vector<int64_t> &a,
                         const std::vector<int64_t> &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    if (a[i] != b[i]) {
      LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i,
                                    a[i], b[i]);
      return false;
    }
  }
  return true;
}

static bool CompareTensorData(const framework::LoDTensor &a,
                              const framework::LoDTensor &b) {
  auto a_shape = framework::vectorize(a.dims());
  auto b_shape = framework::vectorize(b.dims());
871
  size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), size_t{1},
L
luotao1 已提交
872
                                  [](int a, int b) { return a * b; });
873
  size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), size_t{1},
L
luotao1 已提交
874 875 876 877 878 879 880
                                  [](int a, int b) { return a * b; });
  if (a_size != b_size) {
    LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d",
                                  a_size, b_size);
  }

  for (size_t i = 0; i < a_size; i++) {
881
    if (a.type() == VarType::FP32) {
L
luotao1 已提交
882 883 884 885 886 887 888 889
      const auto *a_data = a.data<float>();
      const auto *b_data = b.data<float>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
890
    } else if (a.type() == VarType::INT64) {
L
luotao1 已提交
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
      const auto *a_data = a.data<int64_t>();
      const auto *b_data = b.data<int64_t>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    }
  }

  return true;
}

static bool CompareTensor(const framework::LoDTensor &a,
                          const framework::LoDTensor &b) {
  if (!CompareLoD(a.lod(), b.lod())) {
    return false;
  }
  if (!CompareShape(framework::vectorize(a.dims()),
                    framework::vectorize(b.dims()))) {
    return false;
  }

  if (!CompareTensorData(a, b)) {
    return false;
  }

  return true;
}

L
luotao1 已提交
922 923
}  // namespace inference
}  // namespace paddle