op_teller.cc 57.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tensorrt/op_teller.h"
16
#include <bitset>
17
#include "paddle/fluid/framework/block_desc.h"
18
#include "paddle/fluid/framework/data_layout.h"
19

W
wanghuancoder 已提交
20 21 22 23 24 25
namespace paddle {
namespace framework {
class OpDesc;
}  // namespace framework
}  // namespace paddle

26 27 28 29 30 31
namespace paddle {
namespace inference {
namespace tensorrt {

// Just tell by the op_types.
struct SimpleOpTypeSetTeller : public Teller {
32
  SimpleOpTypeSetTeller() {
33 34 35 36 37
// TODO(baoachun) The group_norm trt plugin will check input's dim
// not -1 failed when dynamic shape mode.
// #if IS_TRT_VERSION_GE(7130)
//     teller_set.insert("group_norm");
// #endif
W
wenbin 已提交
38 39
#if IS_TRT_VERSION_GE(7000)
    teller_set.insert("tile");
40
    teller_set.insert("flatten_contiguous_range");
W
wenbin 已提交
41
#endif
W
wenbin 已提交
42
#if CUDA_VERSION >= 10020
W
Wangzheee 已提交
43 44
    teller_set.insert("reshape");
    teller_set.insert("reshape2");
45 46
    int8_teller_set.insert("reshape");
    int8_teller_set.insert("reshape2");
47 48
#endif
  }
49

50 51 52 53 54 55 56
  bool operator()(const std::string& op_type, const framework::OpDesc& desc,
                  bool use_no_calib_int8) override {
    if (use_no_calib_int8) {
      return int8_teller_set.count(op_type);
    } else {
      return teller_set.count(op_type);
    }
57 58 59
  }

 private:
60
  // use this set for no calib int8.
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
  std::unordered_set<std::string> int8_teller_set{
      "mul",
      "matmul",
      "conv2d",
      "conv2d_fusion",
      "pool2d",
      "relu",
      "softmax",
      "sigmoid",
      "hard_swish",
      "depthwise_conv2d",
      "batch_norm",
      "concat",
      "tanh",
      "pad",
      "elementwise_add",
77
      "elementwise_sub",
78
      "elementwise_mul",
79
      "elementwise_div",
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
      "dropout",
      "prelu",
      "conv2d_transpose",
      "depthwise_conv2d_transpose",
      "leaky_relu",
      "fc",
      "shuffle_channel",
      "swish",
      "split",
      "instance_norm",
      "gelu",
      "layer_norm",
      "scale",
      "stack",
      "transpose2",
      "transpose",
      "flatten2",
      "flatten",
      "gather",
      "gather_nd",
      "yolo_box",
      "roi_align",
      "affine_channel",
      "nearest_interp",
      "anchor_generator",
      "reduce_sum",
      "reduce_mean",
      "conv3d",
      "conv3d_transpose",
      "mish",
      "nearest_interp_v2",
      "pool3d",
      "deformable_conv",
      "relu6",
      "hard_sigmoid",
      "clip",
      "fused_embedding_eltwise_layernorm",
      "multihead_matmul",
      "skip_layernorm",
      "slice",
      "fused_preln_embedding_eltwise_layernorm",
      "preln_skip_layernorm"};
  std::unordered_set<std::string> teller_set{
      "mul",
      "matmul",
      "conv2d",
      "conv2d_fusion",
      "pool2d",
      "relu",
      "softmax",
      "sigmoid",
      "hard_swish",
      "depthwise_conv2d",
      "batch_norm",
      "concat",
      "tanh",
      "pad",
      "elementwise_add",
138
      "elementwise_sub",
139
      "elementwise_mul",
140
      "elementwise_div",
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
      "dropout",
      "prelu",
      "conv2d_transpose",
      "depthwise_conv2d_transpose",
      "leaky_relu",
      "fc",
      "shuffle_channel",
      "swish",
      "split",
      "instance_norm",
      "gelu",
      "layer_norm",
      "scale",
      "stack",
      "transpose2",
      "transpose",
      "flatten2",
      "flatten",
      "gather",
      "gather_nd",
      "yolo_box",
      "roi_align",
      "affine_channel",
      "nearest_interp",
      "anchor_generator",
      "reduce_sum",
      "reduce_mean",
      "conv3d",
      "conv3d_transpose",
      "mish",
      "nearest_interp_v2",
      "pool3d",
      "deformable_conv",
      "relu6",
      "hard_sigmoid",
      "clip",
      "fused_embedding_eltwise_layernorm",
      "multihead_matmul",
      "skip_layernorm",
      "slice",
      "fused_preln_embedding_eltwise_layernorm",
      "preln_skip_layernorm"};
183 184
};

185 186 187 188
bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
                    bool with_dynamic_shape) {
  const std::string op_type = node->Op()->Type();
  const framework::OpDesc desc = *node->Op();
189
  // do not support the op which is labeled the `skip_quant`
190
  if ((desc.HasAttr("namescope") &&
191
       BOOST_GET_CONST(std::string, desc.GetAttr("op_namescope")) ==
192 193
           "/skip_quant_2/") ||
      desc.HasAttr("skip_quant"))
194
    return false;
195

196
  for (auto& teller : tellers_) {
J
JingZhuangzhuang 已提交
197 198 199
    if (op_type == "relu" || op_type == "relu6" || op_type == "tanh" ||
        op_type == "sigmoid") {
      auto* block = desc.Block();
200 201 202 203 204 205
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
J
JingZhuangzhuang 已提交
206 207 208 209 210 211 212 213 214 215
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << op_type
                << " op does not support input's dim is 1 in tensorrt.";
        return false;
      }
    }

216 217 218
    if (op_type == "pool2d") {
      std::vector<int> paddings =
          BOOST_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
219 220
      if (paddings.size() > 2) {
        return false;
221
      }
222 223 224 225 226 227 228 229 230 231
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "TRT Pool2d expect 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "TRT Pool2d has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
W
wenbin 已提交
232 233 234 235 236 237 238
      if (desc.HasAttr("data_format")) {
        std::string data_format =
            BOOST_GET_CONST(std::string, desc.GetAttr("data_format"));
        if (data_format == "NHWC" || data_format == "NDHWC") {
          return false;
        }
      }
239 240 241 242 243 244 245 246 247 248
      if (!desc.HasAttr("pooling_type")) {
        return false;
      } else {
        std::string pool_type =
            BOOST_GET_CONST(std::string, desc.GetAttr("pooling_type"));
        if (pool_type != "max" && pool_type != "avg") {
          VLOG(3) << "Wrong pool op type, the trt do not support the "
                  << pool_type << " pool type.";
          return false;
        }
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
        if (pool_type == "avg") {
          if (desc.HasAttr("global_pooling")) {
            if (!BOOST_GET_CONST(bool, desc.GetAttr("global_pooling"))) {
              if (desc.HasAttr("exclusive")) {
                if (BOOST_GET_CONST(bool, desc.GetAttr("exclusive"))) {
                  std::vector<int> ksize =
                      BOOST_GET_CONST(std::vector<int>, desc.GetAttr("ksize"));
                  for (size_t i = 0; i < ksize.size(); i++) {
                    if (ksize[i] <= paddings[i]) {
                      VLOG(3) << "the padding size should be less than the "
                                 "filter size "
                                 "for exclusive-counting pooling.";
                      return false;
                    }
                  }
                }
              }
            }
          }
        }
269 270 271 272
      }
    }

    if (op_type == "conv2d" || op_type == "conv2d_transpose" ||
273 274
        op_type == "conv2d_fusion" || op_type == "depthwise_conv2d" ||
        op_type == "depthwise_conv2d_transpose") {
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

      if (desc.HasAttr("enable_int8")) {
        if (op_type == "conv2d" || op_type == "conv2d_fusion") {
          if (!desc.HasAttr("Input_scale")) {
            VLOG(3) << "Input scale not found. TRT int8"
                       " requires conv/deconv to have "
                       "input quantization scales.";
            return false;
          }
        }
      }

298 299
      if (op_type == "conv2d_transpose" ||
          op_type == "depthwise_conv2d_transpose") {
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
              BOOST_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
          if (dilations[0] != 1 || dilations[1] != 1) {
            VLOG(3) << "In conv2d_transpose, Dilations must be (1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
319

W
wenbin 已提交
320
// strides > 1 and 'SAME' is only supported by trt7.0 above
321
#if !IS_TRT_VERSION_GE(7000)
W
wenbin 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335
      if (op_type == "conv2d" || op_type == "conv2d_fusion" ||
          op_type == "depthwise_conv2d") {
        if (desc.HasAttr("padding_algorithm") && with_dynamic_shape) {
          auto padding_algorithm =
              BOOST_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
          if (padding_algorithm == "SAME" && desc.HasAttr("strides")) {
            const std::vector<int> strides =
                BOOST_GET_CONST(std::vector<int>, desc.GetAttr("strides"));
            // there is no issue if strides.size() less than 2
            if (strides.size() > 1) {
              for (size_t i = 0; i < strides.size(); i++) {
                if (strides[i] > 1) return false;
              }
            }
336 337 338 339
          }
        }
      }
#endif
340 341
    }

W
wangxinxin08 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
    if (op_type == "deformable_conv") {
      if (with_dynamic_shape) {
        VLOG(3) << "Deformable conv trt plugin does not support dynamic shape";
        return false;
      }
      auto* block = desc.Block();
      auto input_name = desc.Input("Input")[0];
      auto* input_desc = block->FindVar(input_name);
      const auto input_shape = input_desc->GetShape();

      if (input_shape.size() != 4) {
        VLOG(3) << "Input of deformable conv should be 4-D Tensor, but got "
                << input_shape.size();
        return false;
      }

      auto filter_name = desc.Input("Filter")[0];
      auto* filter_desc = block->FindVar(filter_name);
      const auto filter_shape = filter_desc->GetShape();

      int groups = BOOST_GET_CONST(int, desc.GetAttr("groups"));
      if (input_shape[1] != filter_shape[1] * groups) {
        VLOG(3) << "The number of input channels should be equal to filter "
                << "channels * groups. But got input channels "
                << input_shape[1] << "filter channels " << filter_shape[1];
        return false;
      }

      const std::vector<int> strides =
          BOOST_GET_CONST(std::vector<int>, desc.GetAttr("strides"));
      if (strides.size() != 2) {
        VLOG(3) << "The size of strides should be 2, but got "
                << strides.size();
        return false;
      }

      const std::vector<int> paddings =
          BOOST_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
      if (paddings.size() != 2) {
        VLOG(3) << "The size of paddings shoule be 2, but got "
                << paddings.size();
        return false;
      }
    }

387 388
    if (op_type == "matmul") {
      auto* block = desc.Block();
389 390 391 392 393 394
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414

      // not support broadcast
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      const auto x_shape = x_var_desc->GetShape();
      const auto y_shape = y_var_desc->GetShape();
      if (x_shape.size() != y_shape.size()) {
        VLOG(3)
            << "matmul op not support broadcast, please check inputs'shape. ";
        return false;
      }
      uint64_t dims = 2;
      for (size_t i = 0; i < x_shape.size() - dims; ++i) {
        if (x_shape[i] != y_shape[i] && (x_shape[i] == 1 || y_shape[i] == 1)) {
          VLOG(3) << "matmul op not support broadcast, please check "
                     "inputs'shape[i]. ";
          return false;
        }
      }

415 416 417 418 419
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          const auto shape = var_desc->GetShape();
          if (shape.size() < 3) {
420
            VLOG(3)
P
Pei Yang 已提交
421 422
                << "matmul op dims < 3 not supported in tensorrt, but got dims "
                << shape.size() << ", so jump it.";
423 424 425 426 427
            return false;
          }
        }
      }
    }
W
Wilber 已提交
428 429 430 431 432 433 434 435 436 437 438 439
    if (op_type == "softmax") {
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
    }
440
    if (op_type == "group_norm") {
441
      if (!with_dynamic_shape) return false;
442 443 444 445 446 447 448 449 450
      bool has_attrs = (desc.HasAttr("epsilon") && desc.HasAttr("groups"));
      if (has_attrs == false) return false;

      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
    }
    if (op_type == "concat") {
      if (!desc.HasAttr("axis")) {
        return false;
W
Wilber 已提交
451 452
      }
      int axis = BOOST_GET_CONST(int, desc.GetAttr("axis"));
453 454
      if (!with_dynamic_shape) {
        if (axis == 0) return false;
W
Wilber 已提交
455 456 457 458 459
      }
      auto concat_inputs = desc.Inputs();
      if (concat_inputs.find("AxisTensor") != concat_inputs.end()) {
        if (desc.Input("AxisTensor").size() >= 1) {
          return false;
460
        }
461 462
      }
    }
463 464 465
    if (op_type == "transpose2" || op_type == "transpose") {
      if (!desc.HasAttr("axis")) {
        return false;
466 467 468 469 470 471 472
      }
      std::vector<int> axis =
          BOOST_GET_CONST(std::vector<int>, desc.GetAttr("axis"));
      if (!with_dynamic_shape && axis[0] != 0) return false;
      if (axis.size() >= nvinfer1::Dims::MAX_DIMS) return false;

      auto* block = desc.Block();
473 474 475 476 477 478
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
479 480 481
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
W
wenbin 已提交
482
      if (axis.size() != x_shape.size()) return false;
483
      int dims = x_shape.size();
W
wenbin 已提交
484

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
      std::vector<int> perm(nvinfer1::Dims::MAX_DIMS);
      for (int i = 0; i < dims; i++) {
        perm[i] = axis[i];
      }
      auto is_valid_permutation = [&](int dims,
                                      const std::vector<int>& permutation) {
        std::bitset<nvinfer1::Dims::MAX_DIMS> found;
        for (int i = 0; i < dims; ++i) {
          const int x = permutation[i];
          if ((x < 0) || (x >= dims) || found[x])
            return false;  // Out of bounds or duplicate
          found.set(x);
        }
        return true;
      };
      if (!is_valid_permutation(dims, perm)) {
        VLOG(3) << "Invalid permutation dimensions for trt transpose op "
                   "converter: duplicate or out of bound.";
W
wenbin 已提交
503
        return false;
504 505
      }
    }
506
    if (op_type == "flatten2" || op_type == "flatten") {
507 508 509
      if (!desc.HasAttr("axis")) {
        return false;
      } else {
510 511
#if IS_TRT_VERSION_GE(7130)
#else
512
        if (with_dynamic_shape) return false;
513
#endif
514 515 516 517
        int axis = BOOST_GET_CONST(int, desc.GetAttr("axis"));
        if (axis != 1) return false;
      }
    }
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
    if (op_type == "flatten_contiguous_range") {
      if (!with_dynamic_shape) {
        int start_axis = BOOST_GET_CONST(int, desc.GetAttr("start_axis"));
        int stop_axis = BOOST_GET_CONST(int, desc.GetAttr("stop_axis"));
        auto x_var_name = desc.Input("X")[0];
        auto* block = desc.Block();
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }
        auto* x_var_desc = block->FindVar(x_var_name);
        const auto x_shape = x_var_desc->GetShape();
        int dims = x_shape.size();
        if (start_axis < 0) start_axis += dims;
        if (start_axis == 0) {
          VLOG(3) << "TRT flatten_contiguous_range not support the "
                     "batch-dimension being changed";
          return false;
        }
        if (stop_axis < 0) stop_axis += dims;
        for (int i = start_axis; i <= stop_axis; ++i) {
          if (x_shape[i] < 0) {
            VLOG(3) << "On TRT static shape,flatten_contiguous_range input dim "
                       "should be > 0";
            return false;
          }
        }
      }
    }
549

550
    if (op_type == "gather") {
551 552 553 554 555 556 557 558 559
      auto gather_inputs = desc.Inputs();
      if (gather_inputs.find("Axis") != gather_inputs.end()) {
        if (desc.Input("Axis").size() >= 1) {
          return false;
        }
      }
      if (!with_dynamic_shape) {
        return false;
      } else {
560
        auto* block = desc.Block();
561 562 563 564 565 566
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }
F
feng_shuai 已提交
567
#if !IS_TRT_VERSION_GE(7000)
568 569 570 571 572 573
        auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
        const auto x_shape = x_var_desc->GetShape();
        if (x_shape.size() == 1) {
          VLOG(3) << "Gather does not support 1-dimensional input in tensorrt";
          return false;
        }
F
feng_shuai 已提交
574
#endif
575
      }
576
    }
Z
zlsh80826 已提交
577

578
    if (op_type == "gather_nd") {
579 580
      if (!with_dynamic_shape) return false;

581
      auto* block = desc.Block();
582 583 584 585 586 587
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
588 589 590 591 592 593 594 595 596 597 598 599 600 601
      auto x_var_name = desc.Input("X")[0];
      auto index_var_name = desc.Input("Index")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto* index_var_desc = block->FindVar(index_var_name);

      // The index input must be int32 datatype.
      if (index_var_desc->GetDataType() !=
          paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
        VLOG(3) << "gather_nd op Index input data type must be int32";
        return false;
      }

      const auto index_shape = index_var_desc->GetShape();
      const auto x_shape = x_var_desc->GetShape();
602 603 604 605 606 607
      if (x_shape.size() <= 2) {
        VLOG(3) << "gather_nd op requires the input's dimension to be greater "
                   "than 2";
        return false;
      }

608 609 610 611 612 613 614
      if (x_shape.size() != index_shape.size()) {
        VLOG(3) << "gather_nd op Index input dims size [" << index_shape.size()
                << " ] not equal to x dims size [" << x_shape.size() << "]";
        return false;
      }
    }

615 616 617 618
    if (op_type == "anchor_generator") {
      if (!with_dynamic_shape) return false;
    }

Z
zlsh80826 已提交
619 620 621 622 623 624
    if (op_type == "yolo_box") {
      if (with_dynamic_shape) return false;
      bool has_attrs =
          (desc.HasAttr("class_num") && desc.HasAttr("anchors") &&
           desc.HasAttr("downsample_ratio") && desc.HasAttr("conf_thresh") &&
           desc.HasAttr("clip_bbox") && desc.HasAttr("scale_x_y"));
Z
zlsh80826 已提交
625
      if (!has_attrs) return false;
Z
zlsh80826 已提交
626 627
    }

628 629 630 631 632
    if (op_type == "affine_channel") {
      if (!desc.HasAttr("data_layout")) return false;
      auto data_layout = framework::StringToDataLayout(
          BOOST_GET_CONST(std::string, desc.GetAttr("data_layout")));
      if (data_layout != framework::DataLayout::kNCHW) return false;
633 634

      auto* block = desc.Block();
635 636 637 638 639 640
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
641 642 643 644 645 646
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 2) {
        return false;
      }
647 648
    }

Z
zlsh80826 已提交
649 650 651
    if (op_type == "multiclass_nms") {
      if (with_dynamic_shape) return false;
      auto* block = desc.Block();
652 653 654 655 656 657
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
Z
zlsh80826 已提交
658 659 660 661 662
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          const auto shape = var_desc->GetShape();
          if (shape.size() != 3) {
663
            VLOG(3) << "multiclass_nms op dims != 3 not supported in tensorrt, "
Z
zlsh80826 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
                       "but got dims "
                    << shape.size() << ", so jump it.";
            return false;
          }
        }
      }
      bool has_attrs =
          (desc.HasAttr("background_label") &&
           desc.HasAttr("score_threshold") && desc.HasAttr("nms_top_k") &&
           desc.HasAttr("keep_top_k") && desc.HasAttr("normalized"));
      if (has_attrs == false) return false;

      auto nms_top_k = BOOST_GET_CONST(int, desc.GetAttr("nms_top_k"));
      if (nms_top_k < 0) return false;

      auto keep_top_k = BOOST_GET_CONST(int, desc.GetAttr("keep_top_k"));
      if (keep_top_k < 0) return false;

      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
    }

686
    if (op_type == "nearest_interp") {
687 688
      std::vector<std::string> attrs{"interp_method", "align_corners", "scale",
                                     "out_h", "out_w"};
689 690 691
      for (auto const attr : attrs) {
        if (!desc.HasAttr(attr)) return false;
      }
692 693 694 695 696 697 698
      if (desc.HasAttr("data_layout")) {
        auto data_layout = framework::StringToDataLayout(
            BOOST_GET_CONST(std::string, desc.GetAttr("data_layout")));
        if (data_layout != framework::DataLayout::kNCHW &&
            data_layout != framework::DataLayout::kNHWC)
          return false;
      }
699 700 701
      auto interp_method =
          BOOST_GET_CONST(std::string, desc.GetAttr("interp_method"));
      if (interp_method != "nearest") return false;
702 703 704 705 706 707 708 709
      auto scale = BOOST_GET_CONST(float, desc.GetAttr("scale"));
      auto out_h = BOOST_GET_CONST(int, desc.GetAttr("out_h"));
      auto out_w = BOOST_GET_CONST(int, desc.GetAttr("out_w"));
      auto align_corners = BOOST_GET_CONST(bool, desc.GetAttr("align_corners"));
      if (!(scale > 0.f && (out_h <= 0 && out_w <= 0))) {
        if (out_h <= 0) {
          VLOG(3) << "out_h must be greater than 0 if scale is not set.";
          return false;
710
        }
711 712
        if (out_w <= 0) {
          VLOG(3) << "out_w must be greater than 0 if scale is not set.";
已提交
713 714
          return false;
        }
715
      }
716 717 718 719 720 721 722 723 724
      if ((scale <= 0.f) && with_dynamic_shape) {
        VLOG(3) << "dynamic shape not support scale not set.";
        return false;
      }
      // When align_corners = true, the paddle's and trt_layer's results has
      // diff
      if (align_corners && scale != 1) {
        return false;
      }
725
    }
726

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
    if (op_type == "nearest_interp_v2") {
      std::vector<std::string> attrs{"data_layout",   "interp_method",
                                     "align_corners", "scale",
                                     "out_h",         "out_w"};
      for (auto const attr : attrs) {
        if (!desc.HasAttr(attr)) return false;
      }
      auto data_layout = framework::StringToDataLayout(
          BOOST_GET_CONST(std::string, desc.GetAttr("data_layout")));
      if (data_layout != framework::DataLayout::kNCHW &&
          data_layout != framework::DataLayout::kNHWC)
        return false;
      auto interp_method =
          BOOST_GET_CONST(std::string, desc.GetAttr("interp_method"));
      if (interp_method != "nearest") return false;
      auto scale = BOOST_GET_CONST(std::vector<float>, desc.GetAttr("scale"));
      auto out_h = BOOST_GET_CONST(int, desc.GetAttr("out_h"));
      auto out_w = BOOST_GET_CONST(int, desc.GetAttr("out_w"));
      if (!(out_h > 0 && out_w > 0)) {
W
wenbin 已提交
746
        if (scale.size() < 2) return false;
747 748 749 750 751 752 753 754
        if (scale[0] <= 0.f || scale[1] <= 0.f) {
          VLOG(3) << "scale factor must be greater than 0 if out_h or out_w is "
                     "not set.";
          return false;
        }
      }
    }

755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
    if (op_type == "hard_swish") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "HardSwish op has only 1 input, but got "
                << desc.Input("X").size();
        return false;
      }

      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "HardSwish op has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
    }

    if (op_type == "batch_norm") {
      const std::vector<std::string> bn_inputs = {"X", "Bias", "Mean", "Scale",
                                                  "Variance"};
      for (unsigned int i = 0; i < bn_inputs.size(); i++) {
        if (desc.Input(bn_inputs[i]).size() != 1) {
          VLOG(3) << "Invalid " << bn_inputs[i]
                  << "'s size of batch_norm TRT "
                     "converter. Expected 1, received "
                  << desc.Input(bn_inputs[i]).size() << ".";
          return false;
        }
      }
781 782 783 784 785 786
      auto batch_norm_inputs = desc.Inputs();
      if (batch_norm_inputs.find("MomentumTensor") != batch_norm_inputs.end()) {
        if (desc.Input("MomentumTensor").size() >= 1) {
          return false;
        }
      }
787 788 789 790 791 792
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "Invalid output Y's size of batch_norm TRT "
                   "converter. Expected 1, received "
                << desc.Output("Y").size() << ".";
        return false;
      }
W
Wilber 已提交
793 794 795 796 797 798 799 800 801 802
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
803 804 805 806 807 808 809 810 811
    }

    if (op_type == "split") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of split TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
812 813 814 815 816 817 818 819 820 821 822
      auto split_inputs = desc.Inputs();
      if (split_inputs.find("AxisTensor") != split_inputs.end()) {
        if (desc.Input("AxisTensor").size() >= 1) {
          return false;
        }
      }
      if (split_inputs.find("SectionsTensorList") != split_inputs.end()) {
        if (desc.Input("SectionsTensorList").size() >= 1) {
          return false;
        }
      }
823 824
      if (!desc.HasAttr("axis")) {
        return false;
825 826 827 828 829 830 831 832 833
      }
      int axis = BOOST_GET_CONST(int, desc.GetAttr("axis"));

      if (axis == 0) {
        VLOG(3) << "Invalid split axis. Split on batch is not supported in "
                   "TensorRT";
        return false;
      }
      auto* block = desc.Block();
834 835 836 837 838 839
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      size_t output_num = desc.Output("Out").size();
      std::vector<int> output_lengths;
      int num = 0;
      if (desc.HasAttr("num")) {
        num = BOOST_GET_CONST(int, desc.GetAttr("num"));
      }
      if (desc.HasAttr("sections")) {
        output_lengths =
            BOOST_GET_CONST(std::vector<int>, desc.GetAttr("sections"));
      }
      if (output_lengths.size() == 0 && num == 0) {
        VLOG(3) << "sections and num cannot be equal to 0 at the same time";
        return false;
      }
      if (with_dynamic_shape) {
#if IS_TRT_VERSION_GE(6000)
#else
        VLOG(3) << "You are running the TRT Dynamic Shape mode, need to "
                   "confirm that "
                   "your TRT version is no less than 6.0";
        return false;
#endif
      }
      axis += (axis < 0) ? x_shape.size() : 0;
      if (x_shape[axis] == -1) {
        VLOG(3) << "The (" << axis << ") dim of input should not be -1";
        return false;
      }
      if (output_lengths.size() == 0) {
        if (num > 0) {
          int64_t in_axis_dim = x_shape[axis];
          if (in_axis_dim % num != 0) {
            VLOG(3) << "Invalid number to split. Tensor split does not result"
                       " in an equal division of dimensions. Axis dim = "
                    << in_axis_dim << " num = " << num << "!= 0";
            return false;
          }
          size_t out_axis_dim = in_axis_dim / num;
          for (int i = 0; i < num; ++i) {
            output_lengths.push_back(out_axis_dim);
          }
884 885
        }
      }
886 887 888 889
      if (output_lengths.size() != output_num) {
        VLOG(3) << "The output_length should be equal to the output size.";
        return false;
      }
890
    }
891

892 893 894 895 896 897 898 899
    if (op_type == "scale") {
      auto scale_inputs = desc.Inputs();
      if (scale_inputs.find("ScaleTensor") != scale_inputs.end()) {
        if (desc.Input("ScaleTensor").size() >= 1) {
          return false;
        }
      }
      auto* block = desc.Block();
900 901 902 903 904 905
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
906 907 908
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
909 910 911 912
      if (!with_dynamic_shape && x_shape.size() == 1) {
        VLOG(3) << "Scale op does not support 1-dimensional input in tensorrt";
        return false;
      }
913
    }
914

915
    if (op_type == "slice") {
916 917 918 919 920 921 922 923 924 925
      if (desc.HasAttr("decrease_axis")) {
        std::vector<int> decrease_axis =
            BOOST_GET_CONST(std::vector<int>, desc.GetAttr("decrease_axis"));
        if (decrease_axis.size() > 0) {
          VLOG(3) << "Invalid slice decrease_axis. decrease_axis.size() > 0"
                     "is not supported in TensorRT";
          return false;
        }
      }

926
      if (!desc.HasAttr("axes") || !desc.HasAttr("starts") ||
927 928 929
          !desc.HasAttr("ends")) {
        VLOG(3) << "The necessary attributes of the slice operator axes "
                   "or starts or ends are missing.";
930 931 932 933 934 935 936 937
        return false;
      } else {
        std::vector<int> axes =
            BOOST_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
        std::vector<int> starts =
            BOOST_GET_CONST(std::vector<int>, desc.GetAttr("starts"));
        std::vector<int> ends =
            BOOST_GET_CONST(std::vector<int>, desc.GetAttr("ends"));
938

939
        if (axes.size() != starts.size() || axes.size() != ends.size()) {
940 941
          VLOG(3) << "The shape of attributes of the slice operator axes "
                     "or starts or ends are not equal.";
已提交
942 943
          return false;
        }
944 945 946 947 948 949 950 951
        if (!with_dynamic_shape) {
          for (size_t i = 0; i < axes.size(); i++) {
            if (axes[i] == 0) {
              VLOG(3) << "Invalid slice axis. Slice on batch axis is not "
                         "supported in TensorRT";
              return false;
            }
          }
S
Shang Zhizhou 已提交
952 953 954 955 956 957 958 959 960
        } else {
          for (size_t i = 0; i < axes.size(); i++) {
            if (starts[i] < 0 || ends[i] < 0) {
              VLOG(3) << "Invalid slice attribute 'starts' or 'ends'. "
                         "Negative starts or ends not supported in TensorRT "
                         "when running in dynamic shape mode.";
              return false;
            }
          }
961 962 963 964
        }
      }
    }

965 966
    if (op_type == "elementwise_add" || op_type == "elementwise_mul" ||
        op_type == "elementwise_sub" || op_type == "elementwise_div") {
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "The input op's Input(\"X\").size() "
                   "should equal to 1, but received Input(\"X\").size() = "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Input("Y").size() != 1) {
        VLOG(3) << "The input op's Input(\"Y\").size() "
                   "should equal to 1, but received Input(\"Y\").size() = "
                << desc.Input("Y").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "The input op's Output(\"Out\").size() "
                   "should equal to 1, but reveceid Output(\"Out\").size() = "
                << desc.Output("Out").size() << ".";
        return false;
      }
985
      auto* block = desc.Block();
986 987 988 989 990 991
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
992 993 994 995 996 997 998 999
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      const auto x_shape = x_var_desc->GetShape();
      const auto y_shape = y_var_desc->GetShape();
      if (x_shape.size() == 1 && y_shape.size() == 1) {
        VLOG(3) << "Now trt may not support two 1d tensor elementwise op.";
        return false;
      }
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
    }

    if (op_type == "stack") {
      if (!with_dynamic_shape) {
        VLOG(3)
            << "static shape mode is not supported for TRT stack.\n"
               "You can use the config.SetTRTDynamicShapeInfo(...) interface"
               " to set the shape information to run the dynamic shape "
               "mode.";
        return false;
      }
    }

    if (op_type == "fused_embedding_eltwise_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "fused_embedding_eltwise_layernorm should run on dynamic "
                   "shape mode.";
        return false;
      }
      if (desc.Input("Ids").size() != desc.Input("Embs").size()) {
        VLOG(3) << "The id and emb size of fused EmbEltwiseLayerNormOp "
                   "should be same ";
        return false;
      }
    }

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
    if (op_type == "fused_preln_embedding_eltwise_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3)
            << "fused_preln_embedding_eltwise_layernorm should run on dynamic "
               "shape mode.";
        return false;
      }
      if (desc.Input("Ids").size() != desc.Input("Embs").size()) {
        VLOG(3) << "The id and emb size of fused PrelnEmbEltwiseLayerNormOp "
                   "should be same ";
        return false;
      }
      if (!desc.HasAttr("enable_int8")) {
        VLOG(3) << "PrelnEmbEltwiseLayerNormOp must use int8 mode.";
        return false;
      }
    }

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
    if (op_type == "gelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "gelu op has only 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "gelu op has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
1055

1056
#if IS_TRT_VERSION_LT(7000)
1057
      if (desc.HasAttr("approximate")) {
1058
        VLOG(3) << "approximate gelu op needs TensorRT 7.0 and after";
1059 1060
        if (BOOST_GET_CONST(bool, desc.GetAttr("approximate"))) return false;
      }
1061
#endif
1062 1063

      auto* block = desc.Block();
1064 1065 1066 1067 1068 1069
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1070

1071 1072 1073 1074 1075 1076 1077
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "gelu op does not support input's dim is 1 in tensorrt.";
        return false;
      }
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
    }

    if (op_type == "layer_norm") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of layer_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of layer_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of layer_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
    }

已提交
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
    if (op_type == "instance_norm") {
      if (with_dynamic_shape) {
        VLOG(3) << "trt instance_norm op does not support dynamic shape ";
        return false;
      }
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of instance_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of instance_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of instance_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() != 4) {
        VLOG(3) << "The instance_norm op only support 4-dimensional input in "
                   "tensorrt.";
        return false;
      }
已提交
1144 1145
    }

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
    if (op_type == "leaky_relu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid number of TRT leaky_relu op converter "
                   "inputs. Expected 1, but received "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "output of leaky_relu op converter should be 1, got "
                << desc.Output("Out").size();
        return false;
      }
    }

    if (op_type == "pad") {
      const float pad_value = BOOST_GET_CONST(float, desc.GetAttr("pad_value"));
      if (pad_value != 0.0f) {
        VLOG(3) << "The pad layer of TRT only support zero.";
        return false;
      }
已提交
1166 1167
      std::vector<int64_t> shape;
      auto* block = desc.Block();
1168 1169 1170 1171 1172 1173
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          shape = var_desc->GetShape();
        }
      }
      int nbDims = shape.size();
      std::vector<int> paddings =
          BOOST_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
      int pad_size = paddings.size();
      if (nbDims < 2) {
        return false;
      }
      if (nbDims * 2 != pad_size) {
        return false;
      }
      for (int i = 0; i < pad_size - 4; i++) {
        if (paddings[i] != 0) {
          return false;
        }
      }
1195 1196
    }

1197 1198
    if (op_type == "swish") {
      auto* block = desc.Block();
1199 1200 1201 1202 1203 1204
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1205 1206 1207 1208 1209 1210 1211 1212 1213
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "swish op does not support input's dim is 1 in tensorrt.";
        return false;
      }
    }

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
    if (op_type == "prelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "Invalid output Out's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Output("Out").size() << ".";
        return false;
      }
1227 1228

      auto* block = desc.Block();
1229 1230 1231 1232 1233 1234
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1235 1236 1237 1238 1239 1240 1241 1242 1243
      auto* var_desc = block->FindVar(desc.Input("Alpha")[0]);
      if (!var_desc) {
        VLOG(3) << "Variable Alpha of prelu TRT converter not found.";
        return false;
      }

      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1244 1245 1246
      if (!with_dynamic_shape && x_shape.size() == 1) {
        VLOG(3) << "prelu op does not support input's dim is 1 in tensorrt "
                   "with static shape.";
1247 1248 1249
        return false;
      }

W
Wilber 已提交
1250 1251 1252 1253 1254 1255 1256
#if IS_TRT_VERSION_LT(7000)
      if (!with_dynamic_shape) {
        // TODO(inference): fix trt6 static plugin error.
        VLOG(3) << "prelu static plugin in trt6 has bug.";
        return false;
      }
#endif
1257 1258
    }

W
wangxinxin08 已提交
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
    if (op_type == "mish") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of mish TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "Invalid output Out's size of mish TRT converter. "
                   "Expected 1, received "
                << desc.Output("Out").size() << ".";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }

      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "mish op does not support input's dim is 1 in tensorrt.";
        return false;
      }
    }

1290 1291 1292 1293 1294 1295 1296
    if (op_type == "roi_align") {
      if (!with_dynamic_shape) {
        VLOG(3) << "TRT roi align plugin only accept the dynamic shape, "
                   "because that "
                   "the roi_align will change the batch size.";
        return false;
      }
1297
      std::vector<std::string> attrs{"pooled_height", "pooled_width",
F
fengkuangxiaxia 已提交
1298 1299
                                     "spatial_scale", "sampling_ratio",
                                     "aligned"};
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
      for (auto const attr : attrs) {
        if (!desc.HasAttr(attr)) return false;
      }

      const auto pooled_height =
          BOOST_GET_CONST(int, desc.GetAttr("pooled_height"));
      if (pooled_height <= 0) return false;

      const auto pooled_width =
          BOOST_GET_CONST(int, desc.GetAttr("pooled_width"));
      if (pooled_width <= 0) return false;

      const auto spatial_scale =
          BOOST_GET_CONST(float, desc.GetAttr("spatial_scale"));
      if (spatial_scale <= 0.f) return false;

      auto roi_align_inputs = desc.Inputs();
      if (roi_align_inputs.find("RoisNum") != roi_align_inputs.end()) {
        if (desc.Input("RoisNum").size() >= 1) {
          return false;
        }
      }
1322 1323 1324 1325 1326 1327 1328 1329
    }

    if (op_type == "shuffle_channel") {
      if (with_dynamic_shape) {
        VLOG(3) << "You are running the TRT Dynamic Shape mode, "
                   "the shuffle_channel op does not support dynamic shape yet";
        return false;
      }
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto* input_desc = block->FindVar(desc.Input("X").front());
      const auto input_shape = input_desc->GetShape();
      if (input_shape.size() != 4) {
        VLOG(3) << "input dims is invalid. The input "
                   "dims size should be 4.";
        return false;
      }
1344 1345 1346 1347 1348 1349 1350 1351 1352
    }

    if (op_type == "skip_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the skip_layernorm does not support static shape yet";
        return false;
      }
    }

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
    if (op_type == "preln_skip_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the preln_skip_layernorm does not support static shape yet";
        return false;
      }
      if (!desc.HasAttr("enable_int8")) {
        VLOG(3) << "PrelnEmbEltwiseLayerNormOp must use int8 mode.";
        return false;
      }
    }

1364 1365 1366 1367 1368
    if (op_type == "multihead_matmul") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the multihead_matmul does not support static shape yet";
        return false;
      }
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404

      if (desc.HasAttr("enable_int8") && !desc.HasAttr("Input_scale")) {
        VLOG(3) << "Multihead layers must have input scale in int8 mode.";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto* input_desc = block->FindVar(desc.Input("Input").front());
      const auto input_shape = input_desc->GetShape();
      const auto head_number =
          BOOST_GET_CONST(int, desc.GetAttr("head_number"));

      auto* biasqk_desc = block->FindVar(desc.Input("BiasQK").front());
      const auto biasqk_shape = biasqk_desc->GetShape();
      // The BiasQK's shape requires to be
      // [batch, 1, 1, length] or [batch, head, length, length].
      bool has_same_shape = head_number == biasqk_shape[1] &&
                            input_shape[1] == biasqk_shape[2] &&
                            input_shape[1] == biasqk_shape[3];
      bool is_broadcastable = biasqk_shape[1] == 1 && biasqk_shape[2] == 1 &&
                              input_shape[1] == biasqk_shape[3];
      if (!(has_same_shape || is_broadcastable)) {
        VLOG(3) << "The BiasQK's shape is invalid, expect [" << input_shape[0]
                << ", 1, 1, " << input_shape[1] << "] or [" << input_shape[0]
                << ", " << head_number << ", " << input_shape[1] << ", "
                << input_shape[1] << "] but [" << biasqk_shape[0] << ", "
                << biasqk_shape[1] << ", " << biasqk_shape[2] << ", "
                << biasqk_shape[3] << "].";
        return false;
      }
1405 1406
    }

1407
    if (op_type == "fc") {
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }

      // y'shapes == 2
      auto fc_inputs = desc.Inputs();
      std::string fc_y = "";
      if (fc_inputs.find("Y") != fc_inputs.end()) {
        fc_y = "Y";
      } else if (fc_inputs.find("W") != fc_inputs.end()) {
        fc_y = "W";
      } else {
        VLOG(3) << " input_y(fc_op) must be Y or W ";
        return false;
      }

      //  There is currently no input: Y(weight) more than two dimensions
      /*
      auto* y_var_desc = block->FindVar(desc.Input(fc_y)[0]);
      const auto y_shape = y_var_desc->GetShape();
      if (y_shape.size() != 2) {
        VLOG(3)
            << " input_y(fc_op)'shapes must be 2, but input_y(fc_op)'shapes = "
            << y_shape.size();
        return false;
      }
      // y_num_col_dims ==1
      if (desc.HasAttr("y_num_col_dims")) {
        int y_num_col_dims =
            BOOST_GET_CONST(int, desc.GetAttr("y_num_col_dims"));
        if (y_num_col_dims != 1) {
          VLOG(3) << " fc_op'y_num_col_dims must be 1, but y_num_col_dims = "
                  << y_num_col_dims;
          return false;
        }
      }
      */
1449 1450 1451 1452 1453 1454 1455
      int x_num_col_dims =
          desc.HasAttr("x_num_col_dims")
              ? BOOST_GET_CONST(int, desc.GetAttr("x_num_col_dims"))
              : (desc.HasAttr("in_num_col_dims")
                     ? BOOST_GET_CONST(int, desc.GetAttr("in_num_col_dims"))
                     : 1);
      if (x_num_col_dims < 1) {
1456 1457 1458
        VLOG(3) << "fc_op expects x_num_col_dims >= 1, "
                   "but x_num_col_dims = "
                << x_num_col_dims;
1459 1460 1461
        return false;
      }
    }
1462

W
Wangzheee 已提交
1463 1464 1465
    if (op_type == "reshape" || op_type == "reshape2") {
      if (!desc.HasAttr("shape")) {
        return false;
W
Wilber 已提交
1466 1467
      }
      // Paddle-TRT does not support the input tensors: Shape and ShapeTensor
1468
      auto reshape_inputs = desc.Inputs();
1469 1470 1471 1472 1473 1474 1475 1476 1477
      if (reshape_inputs.find("Shape") != reshape_inputs.end()) {
        if (desc.Input("Shape").size() >= 1) {
          return false;
        }
      }
      if (reshape_inputs.find("ShapeTensor") != reshape_inputs.end()) {
        if (desc.Input("ShapeTensor").size() >= 1) {
          return false;
        }
W
Wangzheee 已提交
1478
      }
W
Wilber 已提交
1479 1480 1481
      std::vector<int> shape =
          BOOST_GET_CONST(std::vector<int>, desc.GetAttr("shape"));
      if (shape.size() >= nvinfer1::Dims::MAX_DIMS) return false;
1482 1483
      if (!with_dynamic_shape && (shape[0] == -1 || shape.size() == 1))
        return false;
W
Wangzheee 已提交
1484
    }
1485

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
    if (op_type == "clip") {
      // Paddle-TRT does not support the input tensors: Min and Max
      auto clip_inputs = desc.Inputs();
      if (clip_inputs.find("Min") != clip_inputs.end()) {
        if (desc.Input("Min").size() >= 1) {
          return false;
        }
      }
      if (clip_inputs.find("Max") != clip_inputs.end()) {
        if (desc.Input("Max").size() >= 1) {
          return false;
        }
      }

      auto* block = desc.Block();
1501 1502 1503 1504 1505 1506
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1507 1508 1509 1510 1511 1512 1513 1514 1515
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "clip op does not support input's dim is 1 in tensorrt.";
        return false;
      }
    }

W
wenbin 已提交
1516
    if (op_type == "reduce_sum" || op_type == "reduce_mean") {
1517 1518
      if (!(desc.HasAttr("keep_dim") && desc.HasAttr("dim") &&
            desc.HasAttr("reduce_all"))) {
W
wenbin 已提交
1519 1520
        VLOG(3) << "the " << op_type
                << " does not have attr (keep_dim or dim or "
1521
                   "reduce_all)";
1522 1523 1524 1525 1526 1527 1528 1529
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
1530 1531
        return false;
      }
W
wenbin 已提交
1532 1533

      // The batch size dimension cannot be reduced if it's not dynamic shape.
1534
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
W
wenbin 已提交
1535
      if (!with_dynamic_shape) {
W
wenbin 已提交
1536
        if (BOOST_GET_CONST(bool, desc.GetAttr("reduce_all"))) return false;
W
wenbin 已提交
1537 1538
        std::vector<int32_t> dim =
            BOOST_GET_CONST(std::vector<int32_t>, desc.GetAttr("dim"));
1539
        const auto input_shape = x_var_desc->GetShape();
W
wenbin 已提交
1540
        for (auto x : dim) {
1541
          if (x == 0 || (x + input_shape.size() == 0)) return false;
W
wenbin 已提交
1542
        }
1543

1544 1545 1546 1547 1548
      } else {
        if (BOOST_GET_CONST(bool, desc.GetAttr("reduce_all")) &&
            !BOOST_GET_CONST(bool, desc.GetAttr("keep_dim")))
          return false;
      }
1549 1550 1551 1552 1553 1554 1555

      auto dtype = x_var_desc->GetDataType();
#if IS_TRT_VERSION_GE(7000)
      if (dtype != framework::proto::VarType::INT32 &&
          dtype != framework::proto::VarType::FP32) {
        VLOG(3) << "reduce op input data type must be int32 or float32";
        return false;
W
wenbin 已提交
1556
      }
1557 1558 1559 1560 1561 1562 1563
#else
      if (dtype != framework::proto::VarType::FP32) {
        VLOG(3)
            << "reduce op input data type must be float32 using TensorRT < 7.0";
        return false;
      }
#endif
1564
    }
W
wenbin 已提交
1565 1566 1567
#if IS_TRT_VERSION_GE(7000)
    if (op_type == "tile") {
      // Paddle-TRT does not support the input tensors.
1568 1569 1570
      auto tile_inputs = desc.Inputs();
      if (tile_inputs.find("repeat_times_tensor") != tile_inputs.end()) {
        if (desc.Input("repeat_times_tensor").size() >= 1) {
W
wenbin 已提交
1571
          return false;
1572 1573 1574 1575
        }
      }
      if (tile_inputs.find("RepeatTimes") != tile_inputs.end()) {
        if (desc.Input("RepeatTimes").size() >= 1) {
W
wenbin 已提交
1576
          return false;
1577
        }
W
wenbin 已提交
1578 1579 1580 1581 1582
      }
      if (with_dynamic_shape) return false;
      if (!with_dynamic_shape && !desc.HasAttr("repeat_times")) return false;
    }
#endif
1583

W
wenbin 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
    if (op_type == "conv3d" || op_type == "conv3d_transpose") {
      if (desc.HasAttr("padding_algorithm")) {
        std::string padding_algorithm =
            BOOST_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));

        // trt error is arised if conv3d_transpose and SAME
        if (op_type == "conv3d_transpose" && padding_algorithm == "SAME" &&
            !with_dynamic_shape) {
          return false;
        }
      }

#if !IS_TRT_VERSION_GE(7000)
      // looks like some issues with trt6.0
      if (with_dynamic_shape) {
        return false;
      }
#endif
      std::vector<int> paddings =
          BOOST_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));

      // conv3d and conv3d_transpose need padding check
      if (paddings.size() > 3) return false;

      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

      if (op_type == "conv3d_transpose") {
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
              BOOST_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
          if (dilations[0] != 1 || dilations[1] != 1 || dilations[2] != 1) {
            VLOG(3) << "In conv3d_transpose, Dilations must be (1, 1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ", "
                    << dilations[2] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
    }

1643 1644 1645 1646
    if (op_type == "hard_sigmoid") {
      if (!with_dynamic_shape) {
        auto* block = desc.Block();
        if (block == nullptr) {
1647 1648 1649
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
1650 1651 1652 1653 1654
          return false;
        }
        auto x_var_name = desc.Input("X")[0];
        auto* x_var_desc = block->FindVar(x_var_name);
        const auto x_shape = x_var_desc->GetShape();
1655 1656 1657
        if (x_shape.size() == 1) {
          VLOG(3) << "Hard sigmoid does not support 1-dimensional input in "
                     "tensorrt";
1658 1659 1660 1661 1662
          return false;
        }
      }
    }

1663
    if ((*teller)(op_type, desc, use_no_calib_int8)) return true;
1664
  }
W
wenbin 已提交
1665

1666 1667 1668 1669 1670 1671 1672 1673
  return false;
}

OpTeller::OpTeller() { tellers_.emplace_back(new SimpleOpTypeSetTeller); }

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle