tensor_utils.cc 6.8 KB
Newer Older
石晓伟 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/lite/tensor_utils.h"
#include <map>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/inference/lite/engine.h"

namespace paddle {
namespace inference {
namespace lite {
namespace utils {

using paddle::lite_api::TargetType;
using paddle::lite_api::PrecisionType;
using paddle::lite_api::DataLayoutType;

template <typename DstLoD, typename SrcLoD>
void SetLoD(DstLoD* dst, const SrcLoD& src) {
  dst->reserve(src.size());
  dst->clear();
  for (auto&& v : src) {
    dst->emplace_back(v);
  }
}
template void SetLoD<paddle::lite::LoD, framework::LoD>(
    paddle::lite::LoD* dst, const framework::LoD& src);
template void SetLoD<framework::LoD, paddle::lite::LoD>(
    framework::LoD* dst, const paddle::lite::LoD& src);

platform::Place GetNativePlace(const TargetType& type, int id = 0) {
  switch (type) {
    case TargetType::kHost:
    case TargetType::kX86:
      return platform::CPUPlace();
    case TargetType::kCUDA:
      return platform::CUDAPlace(id);
    default:
      LOG(FATAL) << "Error target type.";
      return platform::Place();
  }
}

TargetType GetLiteTargetType(const platform::Place& place) {
  if (platform::is_cpu_place(place)) {
    return TargetType::kHost;
  }
  return TargetType::kCUDA;
}

PrecisionType GetLitePrecisionType(framework::proto::VarType::Type type) {
  switch (type) {
    case framework::proto::VarType_Type_FP32:
      return PrecisionType::kFloat;
    case framework::proto::VarType_Type_INT8:
      return PrecisionType::kInt8;
    case framework::proto::VarType_Type_INT32:
      return PrecisionType::kInt32;
    case framework::proto::VarType_Type_INT64:
      return PrecisionType::kInt64;
    default:
      LOG(FATAL) << "Error precision type.";
      return PrecisionType::kUnk;
  }
}

framework::proto::VarType::Type GetNativePrecisionType(
    const PrecisionType& type) {
  switch (type) {
    case PrecisionType::kFloat:
      return framework::proto::VarType_Type_FP32;
    case PrecisionType::kInt8:
      return framework::proto::VarType_Type_INT8;
    case PrecisionType::kInt32:
      return framework::proto::VarType_Type_INT32;
    case PrecisionType::kInt64:
      return framework::proto::VarType_Type_INT64;
    default:
      LOG(FATAL) << "Error precision type.";
      return static_cast<framework::proto::VarType::Type>(-1);
  }
}

framework::DataLayout GetNativeLayoutType(const DataLayoutType& type) {
  switch (type) {
    case DataLayoutType::kNCHW:
      return framework::DataLayout::kNCHW;
    default:
      LOG(FATAL) << "Error layout type.";
      return static_cast<framework::DataLayout>(-1);
  }
}

void MemoryCopyAsync(const platform::Place& dst_place, void* dst_data,
                     const platform::Place& src_place, const void* src_data,
                     const size_t size, const platform::DeviceContext& ctx) {
  const platform::CPUPlace cpu_place;
  if (platform::is_cpu_place(dst_place) && platform::is_cpu_place(src_place)) {
    memory::Copy(cpu_place, dst_data, cpu_place, src_data, size);
  } else {
#ifdef PADDLE_WITH_CUDA
    if (platform::is_cpu_place(dst_place) &&
        platform::is_gpu_place(src_place)) {
      LOG(FATAL) << "lite::MemoryCopy GPU->CPU is not yet implemented.";
    } else if (platform::is_gpu_place(dst_place) &&
               platform::is_cpu_place(src_place)) {
      LOG(FATAL) << "lite::MemoryCopy CPU->GPU is not yet implemented.";
    } else if (platform::is_gpu_place(dst_place) &&
               platform::is_gpu_place(src_place)) {
      auto gpu_place = boost::get<platform::CUDAPlace>(src_place);
      memory::Copy(
          gpu_place, dst_data, gpu_place, src_data, size,
          static_cast<const platform::CUDADeviceContext&>(ctx).stream());
    }
#else
    LOG(FATAL) << "You must define PADDLE_WITH_CUDA for using CUDAPlace.";
#endif
  }
}

void InitDstTensor(paddle::lite::Tensor* dst, const framework::LoDTensor& src) {
  // Currently, Lite needs to explicitly specify the target type of
  // the input tensor.
  constexpr int empty_size = 0;
  dst->mutable_data(GetLiteTargetType(src.place()), empty_size);
  dst->set_precision(GetLitePrecisionType(src.type()));
  SetLoD(dst->mutable_lod(), src.lod());
}

void InitDstTensor(framework::LoDTensor* dst, const paddle::lite::Tensor& src) {
  constexpr framework::proto::VarType::Type dtype =
      framework::proto::VarType_Type_FP32;
  dst->mutable_data(inference::lite::utils::GetNativePlace(src.target()),
                    dtype);
  SetLoD(dst->mutable_lod(), src.lod());
}

template <>
void TensorCopyAsync(paddle::lite::Tensor* dst, const framework::LoDTensor& src,
                     const platform::DeviceContext& ctx) {
  InitDstTensor(dst, src);
  const platform::Place& src_place = src.place();
  const platform::Place& dst_place = GetNativePlace(dst->target());
  const size_t bytes =
      static_cast<size_t>(src.numel()) * framework::SizeOfType(src.type());
  dst->Resize(framework::vectorize(src.dims()));
  const void* src_data = src.data<void>();
  void* dst_data = dst->mutable_data(bytes);
160 161
  VLOG(3) << "[CopyAsync fluid -> lite] Bytes = " << bytes << ", src = " << &src
          << ", dst = " << dst << ", src_type = " << src.type();
石晓伟 已提交
162
  MemoryCopyAsync(dst_place, dst_data, src_place, src_data, bytes, ctx);
163
  VLOG(3) << "[Lite memory size] Bytes = " << dst->memory_size();
石晓伟 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177
}

template <>
void TensorCopyAsync(framework::LoDTensor* dst, const paddle::lite::Tensor& src,
                     const platform::DeviceContext& ctx) {
  InitDstTensor(dst, src);
  const platform::Place& src_place = GetNativePlace(src.target());
  const platform::Place& dst_place = dst->place();
  dst->Resize(paddle::framework::make_ddim(src.dims().Vectorize()));
  const size_t bytes =
      static_cast<size_t>(src.numel()) * framework::SizeOfType(dst->type());
  const void* src_data = src.raw_data();
  // When Lite is ready, the source type needs to be modified here.
  void* dst_data = dst->mutable_data(dst_place, dst->type());
178 179
  VLOG(3) << "[CopyAsync lite -> fluid] Bytes = " << bytes << ", src = " << &src
          << ", dst = " << dst << ", src_type = " << dst->type();
石晓伟 已提交
180
  MemoryCopyAsync(dst_place, dst_data, src_place, src_data, bytes, ctx);
181
  VLOG(3) << "[Lite memory size] Bytes = " << src.memory_size();
石晓伟 已提交
182 183 184 185 186 187
}

}  // namespace utils
}  // namespace lite
}  // namespace inference
}  // namespace paddle