framework.py 67.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import collections
Q
qiaolongfei 已提交
16
import contextlib
F
fengjiayi 已提交
17
import re
18
import six
19

Y
Yu Yang 已提交
20
import numpy as np
Q
qiaolongfei 已提交
21

22
from .proto import framework_pb2
23 24
try:
    from . import core
25
except ImportError as e:
26 27 28 29
    raise ImportError(
        """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
    if you encounters \"libmkldnn.so not found\" errors. If you have python
    installed in other directory, replace \"/usr/local/lib\" with your own
Y
yuyang18 已提交
30
    directory. The original error is: \n""" + e.message)
31
except Exception as e:
32
    raise e
33
from . import unique_name
Y
Yu Yang 已提交
34

35
__all__ = [
36 37
    'Program',
    'Operator',
F
fengjiayi 已提交
38
    'Parameter',
39 40 41
    'default_startup_program',
    'default_main_program',
    'program_guard',
X
xuwei06 已提交
42
    'get_var',
43
]
Y
Yu Yang 已提交
44

Q
qiaolongfei 已提交
45 46 47 48 49 50 51 52
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()


def grad_var_name(var_name):
    """
53 54
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
55 56 57
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
58

59
def convert_np_dtype_to_dtype_(np_dtype):
60 61
    """
    Convert the data type in numpy to the data type in Paddle
62

63
    Args:
64
        np_dtype(np.dtype): the data type in numpy.
65

66 67
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
68 69

    """
70 71
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
72
        return core.VarDesc.VarType.FP32
73
    elif dtype == np.float64:
74
        return core.VarDesc.VarType.FP64
75
    elif dtype == np.float16:
76
        return core.VarDesc.VarType.FP16
77
    elif dtype == np.int32:
78
        return core.VarDesc.VarType.INT32
79
    elif dtype == np.int16:
80
        return core.VarDesc.VarType.INT16
81
    elif dtype == np.int64:
82
        return core.VarDesc.VarType.INT64
83
    elif dtype == np.bool:
84
        return core.VarDesc.VarType.BOOL
85 86
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
87 88
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
89
    else:
90
        raise ValueError("Not supported numpy dtype " + six.binary_type(dtype))
91 92 93


def dtype_is_floating(dtype):
94 95 96
    """
    Check the data type is floating or not.
    Args:
97
        dtype(np.dtype|core.VarDesc.VarType): data type.
98 99 100 101 102
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
103
    if not isinstance(dtype, core.VarDesc.VarType):
104 105
        dtype = convert_np_dtype_to_dtype_(dtype)

106 107 108 109
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
110 111


Y
Yang Yang(Tony) 已提交
112
def _debug_string_(proto, throw_on_error=True):
113 114 115 116 117 118 119 120 121 122 123
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
124
    error_fields = list()
Y
Yang Yang(Tony) 已提交
125
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
126 127
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
128 129 130
    return proto.__str__()


Y
Yu Yang 已提交
131
class Variable(object):
132
    """
133 134 135
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
136
    two variables in different blocks could have the same name.
137

138 139
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
140

141
    Most of a Variable's member variables can be setted to be None. It mean
142
    it is not available or will be specified later.
143 144

    Args:
145
        block(Block): The block that the variable belongs to.
146 147
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
148 149
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
150
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
151
            Some kinds of variable do not contain shape, just set it to None.
152 153 154
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
155
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
156
            series data.
157
            Default: None
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
180 181
    """

Y
Yu Yang 已提交
182 183
    def __init__(self,
                 block,
Y
Yu Yang 已提交
184
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
185 186 187 188
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
189
                 capacity=None,
Q
QI JUN 已提交
190
                 persistable=None,
F
fengjiayi 已提交
191
                 error_clip=None,
Y
Yu Yang 已提交
192
                 stop_gradient=False,
F
fengjiayi 已提交
193
                 is_data=False,
Y
Yu Yang 已提交
194
                 **kwargs):
Y
Yu Yang 已提交
195
        self.block = block
F
fengjiayi 已提交
196
        self.error_clip = error_clip
Y
Yu Yang 已提交
197 198

        if name is None:
Y
Yu Yang 已提交
199
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
200
        is_new_var = False
201
        name = name if isinstance(name, six.binary_type) else name.encode()
D
Dong Zhihong 已提交
202 203 204
        self.desc = self.block.desc.find_var(name)

        if self.desc is None:
D
dongzhihong 已提交
205
            self.desc = self.block.desc.var(name)
Y
Yu Yang 已提交
206
            is_new_var = True
Y
Yu Yang 已提交
207

Y
Yu Yang 已提交
208 209 210 211 212 213 214 215
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
216
        if shape is not None:
Y
Yu Yang 已提交
217
            if is_new_var:
218
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
219 220 221 222 223 224 225 226
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
227
        if dtype is not None:
228
            if not isinstance(dtype, core.VarDesc.VarType):
229
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
230
            if is_new_var:
F
fengjiayi 已提交
231
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
232
            else:
F
fengjiayi 已提交
233
                old_dtype = self.dtype
Q
QI JUN 已提交
234
                if dtype != old_dtype:
Y
Yu Yang 已提交
235 236 237 238 239
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
240 241

        if lod_level is not None:
Y
Yu Yang 已提交
242
            if is_new_var:
243
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
244 245 246 247 248 249 250
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
251 252 253 254 255 256 257 258 259 260 261
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

262 263 264 265 266 267 268 269
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
270
        self.block.vars[name] = self
Y
Yu Yang 已提交
271
        self.op = None
Y
Yu Yang 已提交
272
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
273
        self.is_data = is_data
Y
Yu Yang 已提交
274

275
    def __str__(self):
Y
Yang Yang(Tony) 已提交
276 277
        return self.to_string(True)

F
update  
fengjiayi 已提交
278
    def to_string(self, throw_on_error, with_details=False):
279 280 281 282
        """
        Get debug string.

        Args:
283 284
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
285
            with_details(bool): more details about variables and parameters
286 287
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
288

289 290
        Returns:
            str: The debug string.
291
        """
F
update  
fengjiayi 已提交
292 293
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
294
        protostr = self.desc.serialize_to_string()
295
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
296 297 298 299
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
300 301
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
302
        return res_str
303 304 305

    __repr__ = __str__

W
Wu Yi 已提交
306
    def _set_desc(self, input):
307 308 309 310 311 312 313 314 315
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
316 317
        self.desc = input

318 319 320 321
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
322 323 324 325
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
326 327
    @property
    def name(self):
328
        return self.desc.name()
Y
Yu Yang 已提交
329

T
typhoonzero 已提交
330 331 332 333
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
334 335 336
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
337
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
338 339

    @property
F
fengjiayi 已提交
340 341
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
342 343 344

    @property
    def lod_level(self):
345
        return self.desc.lod_level()
Y
Yu Yang 已提交
346

Y
Yu Yang 已提交
347 348 349 350
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
351
    def _set_error_clip(self, error_clip):
352 353 354 355 356 357 358 359 360
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
361 362
        self.error_clip = error_clip

Y
Yu Yang 已提交
363

F
fengjiayi 已提交
364 365 366
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
367

368 369
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
370 371 372 373
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
374
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
375 376 377 378 379
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
380 381 382 383
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
384 385 386 387 388 389 390 391 392
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
393
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
394 395 396 397 398 399
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
400 401 402 403 404 405 406 407
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
408 409
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
410 411
        return self.op_proto_map[type]

412 413 414 415 416 417 418
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
            core.op_proto_and_checker_maker.kOpRoleVarAttrName()
        }

F
fengjiayi 已提交
419

Y
Yu Yang 已提交
420
class Operator(object):
421
    """
422 423 424 425 426 427 428
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
429
        type(str): The type of operator. Default None.
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
450
        Block.append_op or Block._prepend_op instead.
451 452 453 454 455 456 457 458 459 460

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
461
    """
462 463 464 465 466
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
        'ncclInit', 'channel_create', 'channel_close', 'channel_send',
T
tangwei12 已提交
467
        'channel_recv', 'select', 'checkpoint_notify', 'gen_nccl_id'
468
    }
469

Y
Yu Yang 已提交
470 471
    def __init__(self,
                 block,
Y
Yu Yang 已提交
472
                 desc,
Y
Yu Yang 已提交
473 474 475 476 477
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
        self.block = block
Y
Yu Yang 已提交
478
        self.desc = desc
T
typhoonzero 已提交
479
        self.attrs = attrs
Y
yuyang18 已提交
480 481 482 483 484 485 486 487
        if self.attrs is None:
            self.attrs = dict()
        del attrs

        op_maker = core.op_proto_and_checker_maker

        if op_maker.kOpRoleAttrName() not in self.attrs:
            self.attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
488 489 490 491 492 493 494 495

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
               op_role_var) != 0 and role_var_name not in self.attrs:
            self.attrs[role_var_name] = self.block.program.op_role_var

        if role_var_name in self.attrs and len(self.attrs[role_var_name]) == 0:
            del self.attrs[role_var_name]
Y
yuyang18 已提交
496

F
fengjiayi 已提交
497 498 499 500 501
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
502
        self.desc.set_type(type)
F
fengjiayi 已提交
503
        proto = OpProtoHolder.instance().get_op_proto(type)
504

Y
Yang Yang(Tony) 已提交
505 506
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
507
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
508 509
                    return True
            return False
Q
QI JUN 已提交
510

Y
Yang Yang(Tony) 已提交
511 512 513 514 515 516 517
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
518 519 520 521
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
522 523
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
524 525 526
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
527
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
528
                            in_arg_names.append(arg)
529 530
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
531
                        else:
532
                            if isinstance(arg.name, six.string_types):
533 534 535
                                in_arg_names.append(arg.name)
                            elif isinstance(arg.name, six.binary_type):
                                in_arg_names.append(arg.name.decode())
M
minqiyang 已提交
536 537 538 539
                            else:
                                raise TypeError(
                                    "arguments require unicode, str or bytes, but get %s instead."
                                    % (type(arg.name)))
540
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
541 542
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
543

Y
Yu Yang 已提交
544
        if outputs is not None:
545 546 547 548 549 550 551
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
552 553
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
554 555 556
                                 (type,
                                  ", ".join(six.binary_type(e) for e in need),
                                  ", ".join(six.binary_type(e) for e in given)))
557

F
fengjiayi 已提交
558
            for out_proto in proto.outputs:
559 560 561 562
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
563 564
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
565 566 567
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
568
                    if isinstance(arg.name, six.string_types):
569 570 571 572
                        out_arg_names.append(arg.name)
                    elif isinstance(arg.name, six.binary_type):
                        out_arg_names.append(arg.name.decode())
                    else:
M
minqiyang 已提交
573 574 575
                        raise TypeError(
                            "arguments require unicode, str or bytes, but get %s instead."
                            % (type(arg.name)))
576 577
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
578

Y
yuyang18 已提交
579 580
        if self.attrs is not None:
            if not isinstance(self.attrs, dict):
581
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
582
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
583
                attr_name = attr.name
Y
yuyang18 已提交
584 585
                if (attr_name not in self.attrs) or (
                        self.attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
586
                    continue
Y
Yancey1989 已提交
587
                attr_val = self.attrs[attr_name]
G
gongweibao 已提交
588 589
                self._update_desc_attr(attr_name, attr_val)

590
        self.desc.check_attrs()
591
        if self.has_kernel(type):
Q
QI JUN 已提交
592
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
593
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
594

595 596 597
    def has_kernel(self, op_type):
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
598
    def to_string(self, throw_on_error):
599
        """
600 601
        Get debug string.

602
        Args:
603 604
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
605

606 607
        Returns:
            str: The debug string.
608 609

        """
610
        protostr = self.desc.serialize_to_string()
611
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
612 613 614 615
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
616 617 618

    __repr__ = __str__

F
fengjiayi 已提交
619 620 621 622 623
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
624
        """
625
        Get the input arguments according to the input parameter name.
626

627 628
        Args:
            name(str): The input parameter name.
629

630 631 632
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
633
        """
F
fengjiayi 已提交
634 635
        return self.desc.input(name)

T
typhoonzero 已提交
636
    def rename_input(self, old_name, new_name):
637 638 639 640 641 642 643 644 645 646
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
T
typhoonzero 已提交
647 648 649
        self.desc.rename_input(old_name, new_name)

    def rename_output(self, old_name, new_name):
650 651 652 653 654 655 656 657 658 659
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
T
typhoonzero 已提交
660 661
        self.desc.rename_output(old_name, new_name)

F
fengjiayi 已提交
662 663 664 665
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
666 667 668 669 670 671 672 673
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
674
    def output(self, name):
675
        """
676
        Get output arguments by the output parameter name.
677

678 679
        Args:
            name(str): The output parameter name.
680

681 682 683
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
684
        """
F
fengjiayi 已提交
685 686 687 688 689 690
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

691 692 693 694 695 696 697 698
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
699
    def has_attr(self, name):
700
        """
701 702
        Whether this Operator has the attribute with name or not.

703
        Args:
704
            name(str): the attribute name.
705

706 707
        Returns:
            bool: True if has this attribute.
708 709

        """
F
fengjiayi 已提交
710 711 712
        return self.desc.has_attr(name)

    def attr_type(self, name):
713
        """
714
        Get the type of attribute by attribute's name.
715

716 717
        Args:
            name(str): the attribute name.
718

719 720
        Returns:
            core.AttrType: the attribute type.
721
        """
F
fengjiayi 已提交
722 723
        return self.desc.attr_type(name)

Y
yuyang18 已提交
724
    def set_attr(self, name, val):
725 726 727 728 729 730 731 732 733 734
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Y
yuyang18 已提交
735
        self.attrs[name] = val
G
gongweibao 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
749 750
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
751 752
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
753
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
754 755 756 757 758
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            self.desc.set_attr(name, val)
Y
yuyang18 已提交
759

F
fengjiayi 已提交
760 761 762 763 764
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
765
        """
766 767
        Get the attribute by name.

768
        Args:
769
            name(str): the attribute name.
770

771 772
        Returns:
            bool|int|str|float|list: The attribute value. The return value
773 774
            can be any valid attribute type.
        """
F
fengjiayi 已提交
775
        return self.desc.attr(name)
Y
Yu Yang 已提交
776

F
fengjiayi 已提交
777
    def block_attr(self, name):
778
        """
779
        Get the block attribute by name.
780

781 782
        Args:
            name(str): the attribute name.
783

784 785
        Returns:
            int: the block index.
786
        """
F
fengjiayi 已提交
787
        return self.desc.block_attr(name)
Y
Yu Yang 已提交
788

J
JiayiFeng 已提交
789
    def all_attrs(self):
F
fengjiayi 已提交
790
        """
791 792 793 794
        Get the attribute dict.

        Returns:
            dict: The Operator's attribute dict.
F
fengjiayi 已提交
795 796 797 798 799 800 801 802 803 804
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
            if n == 'sub_block':
                attr_map[n] = self.block_attr(n)
            else:
                attr_map[n] = self.attr(n)
        return attr_map

Y
Yu Yang 已提交
805

Y
Yu Yang 已提交
806
class Block(object):
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
        use `Program.create_block()` to create a block.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
836
    def __init__(self, program, idx):
Y
Yu Yang 已提交
837
        self.desc = program.desc.block(idx)
838
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
839
        self.ops = list()  # operator list
Y
Yu Yang 已提交
840
        self.program = program
841
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
842

843
    def __str__(self):
Y
Yang Yang(Tony) 已提交
844 845
        return self.to_string(True)

F
fengjiayi 已提交
846 847
    def to_string(self, throw_on_error, with_details=False):
        """
848 849
        Get debug string.

F
fengjiayi 已提交
850 851
        Args:
            throw_on_error(bool): raise exception when self is not initialized
852
                when throw_on_error is True.
F
update  
fengjiayi 已提交
853
            with_details(bool): more details about variables and parameters
854 855
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
856

857 858
        Returns:
            str: The debug string.
F
fengjiayi 已提交
859 860 861 862
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
863
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
864 865
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
866
            for var in list(self.vars.values()):
F
fengjiayi 已提交
867
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
868
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
869
            for op in self.ops:
F
fengjiayi 已提交
870 871
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
872 873 874
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
875 876
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
877 878
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
879 880 881

    __repr__ = __str__

Y
Yu Yang 已提交
882 883
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
884
        return self.desc.parent
Y
Yu Yang 已提交
885

Y
Yu Yang 已提交
886 887 888 889
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
890
    def _set_forward_block_idx(self, idx):
891 892 893 894 895 896 897 898 899
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
900
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
901

Y
Yu Yang 已提交
902 903
    @property
    def idx(self):
Y
Yu Yang 已提交
904
        return self.desc.id
Y
Yu Yang 已提交
905

Q
Qiao Longfei 已提交
906
    def var(self, name):
907 908 909 910 911 912 913 914 915 916 917 918 919
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
920
        if not isinstance(name, six.string_types):
921 922 923 924
            if not isinstance(name, six.binary_type):
                raise TypeError(
                    "var require string as parameter, but get %s instead." %
                    (type(name)))
Y
Yu Yang 已提交
925 926
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
927
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
928
        return v
Q
Qiao Longfei 已提交
929

W
Wu Yi 已提交
930
    def _var_recursive(self, name):
931 932 933 934 935 936 937 938 939 940 941 942 943
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
970

Q
Qiao Longfei 已提交
971
    def all_parameters(self):
972
        return list(self.iter_parameters())
973

974
    def iter_parameters(self):
975
        return (item[1] for item in list(self.vars.items())
976
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
977

Y
Yu Yang 已提交
978
    def create_var(self, *args, **kwargs):
979
        var = Variable(block=self, *args, **kwargs)
980 981
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
982
        return var
Y
Yu Yang 已提交
983

Q
Qiao Longfei 已提交
984 985 986
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
987
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
988 989
        """
        Rename variable in vars and ops' inputs and outputs
990 991 992 993 994 995 996 997 998 999 1000 1001

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1002 1003
        """
        if not self.has_var(name):
1004
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1005 1006
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1007
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1008 1009 1010 1011 1012 1013 1014
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1015
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1016 1017 1018 1019
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1020
        orig_var_type = v.type
W
Wu Yi 已提交
1021 1022
        self.desc._rename_var(name, new_name)
        # NOTE: v is destroyed by C++ after calling _rename_var.
T
wip  
typhoonzero 已提交
1023
        d = self.desc.find_var(new_name)
T
typhoonzero 已提交
1024
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1025 1026 1027 1028
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1029
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1030 1031 1032 1033 1034 1035 1036
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1037
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1038 1039
            var = Variable(
                self,
T
typhoonzero 已提交
1040
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1041 1042 1043 1044
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1045
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1046 1047 1048
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1049
        self._sync_with_cpp()
1050
        return var
T
typhoonzero 已提交
1051

W
Wu Yi 已提交
1052 1053 1054
    def _remove_var(self, name):
        self._sync_with_cpp()
        self.desc._remove_var(name)
1055 1056
        del self.vars[name]

Y
Yu Yang 已提交
1057 1058
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1059
        param = Parameter(global_block, *args, **kwargs)
1060
        if 'initializer' in kwargs:
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1081
        return param
Y
Yu Yang 已提交
1082

Y
Yu Yang 已提交
1083
    def append_op(self, *args, **kwargs):
1084 1085 1086 1087 1088 1089
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1090
        op_desc = self.desc.append_op()
1091
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
1092 1093 1094
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1095
    def _insert_op(self, index, *args, **kwargs):
1096 1097 1098 1099 1100 1101 1102 1103 1104
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1105 1106
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1107 1108 1109 1110
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1111
    def _remove_op(self, index):
1112 1113 1114 1115 1116 1117 1118 1119 1120
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1121 1122
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1123 1124
        del self.ops[index]

W
Wu Yi 已提交
1125
    def _slice_ops(self, start, end):
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1136
        return self.ops[start:end]
Y
Yancey1989 已提交
1137

W
Wu Yi 已提交
1138 1139
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1140
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1141
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1142 1143
        return op

W
Wu Yi 已提交
1144
    def _sync_with_cpp(self):
1145
        """
1146 1147
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1148
        """
Q
Qiao Longfei 已提交
1149 1150 1151 1152 1153
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1154
        # sync variables removed from c++ end
1155
        for var in list(self.vars.keys()):
1156 1157 1158
            if not self.desc.find_var(var):
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1159
        # sync operators from cpp
1160 1161 1162 1163
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1180 1181 1182 1183 1184

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1185
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1186 1187 1188 1189 1190 1191 1192

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1206 1207 1208 1209
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1210
    def _copy_param_info_from(self, other):
1211
        """
1212 1213
        Copy the information of parameters from the other block.

1214
        Args:
1215 1216 1217 1218 1219
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1220 1221 1222 1223 1224

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1225 1226
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1227
        for p in other.iter_parameters():
1228 1229 1230
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1231
                raise ValueError("_copy_param_info_from should be invoked with "
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1244
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1245
                error_clip=p.error_clip,
1246 1247 1248
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1249
    def _clone_variable(self, var):
1250 1251
        """
        Clone a variable into current block.
1252

1253 1254 1255 1256
        Args:
            var: the variable to be cloned.

        Returns:
1257
            Variable: the new  variable cloned from 'var' in current block.
1258 1259
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1260 1261 1262 1263 1264
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1265 1266
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1267
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1268 1269 1270 1271 1272 1273
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1274 1275
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1276 1277 1278 1279 1280 1281 1282
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1283 1284
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1285
        return ret_var
1286

Y
Yu Yang 已提交
1287 1288

class Program(object):
D
dzhwinter 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1300
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1301 1302

    Returns:
Y
yuyang18 已提交
1303
        A empty program.
D
dzhwinter 已提交
1304 1305

    Examples:
Y
yuyang18 已提交
1306 1307 1308 1309 1310 1311
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1312 1313 1314

    """

1315 1316
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1317 1318
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1319
        self._seed = 0
Y
yuyang18 已提交
1320
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1321
        self._op_role_var = []
T
tangwei12 已提交
1322 1323 1324 1325

        # for distribute
        self._is_distributed = False
        self._is_chief = False
1326
        self._slice_vars_and_atts = []
T
tangwei12 已提交
1327 1328
        self._endpoints = []
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1329 1330 1331

    @property
    def op_role(self):
Y
yuyang18 已提交
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1345 1346 1347 1348 1349 1350 1351 1352
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1353 1354 1355 1356 1357 1358 1359
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1360 1361 1362 1363
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1364
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1365 1366

    @contextlib.contextmanager
1367
    def optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1368 1369 1370 1371 1372 1373 1374
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1375
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1376 1377 1378 1379

        Examples:

            >>> p, g = backward(...)
1380
            >>> with program.optimized_guard([p,g]):
Y
yuyang18 已提交
1381 1382
            >>>     p = p - 0.001 * g
        """
Y
yuyang18 已提交
1383 1384
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1385 1386 1387 1388
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1389
        yield
Y
yuyang18 已提交
1390
        self._op_role_var = []
Y
yuyang18 已提交
1391
        self._current_role = OpRole.Forward
Y
Yu Yang 已提交
1392

1393
    def __str__(self):
Y
yuyang18 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1403 1404
        return self.to_string(True)

F
fengjiayi 已提交
1405 1406 1407
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1408

F
fengjiayi 已提交
1409
        Args:
Y
yuyang18 已提交
1410 1411
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1412

Y
yuyang18 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1433 1434
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1435 1436
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1437

1438
    def get_desc(self):
Y
yuyang18 已提交
1439 1440 1441 1442 1443 1444 1445
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1446 1447
        return self.desc

1448
    def clone(self, for_test=False):
Y
yuyang18 已提交
1449 1450 1451
        """
        Create a new, duplicated program.

1452

Y
yuyang18 已提交
1453 1454 1455 1456
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1457

Y
yuyang18 已提交
1458 1459 1460 1461
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1462 1463 1464 1465 1466
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1467 1468

        Args:
Y
yuyang18 已提交
1469 1470
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1471

D
dzhwinter 已提交
1472
        Returns:
Y
yuyang18 已提交
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1526 1527
        """
        if for_test:
1528
            p = self.inference_optimize()
1529
        else:
1530
            p = Program()
1531
            p.desc = core.ProgramDesc(self.desc)
1532
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
W
Wu Yi 已提交
1533
            p._sync_with_cpp()
1534

W
Wu Yi 已提交
1535
        p._copy_param_info_from(self)
F
fengjiayi 已提交
1536
        p.copy_data_info_from(self)
Y
Yu Yang 已提交
1537
        return p
1538

1539
    def prune(self, targets):
Y
yuyang18 已提交
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1555 1556 1557 1558 1559 1560
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1561 1562
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1563
                    # and we need to find the current op that generate this
1564 1565 1566 1567 1568 1569 1570 1571
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1572
                    t = t.op
1573 1574 1575 1576
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1577
                else:
1578 1579
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1580 1581 1582 1583

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
1584
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
1585
        res._sync_with_cpp()
1586 1587
        return res

1588
    def inference_optimize(self):
Y
yuyang18 已提交
1589
        """
F
fengjiayi 已提交
1590 1591 1592 1593 1594
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1595
        3. change the :code:`is_test`
Y
yuyang18 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1605 1606
        # this is an alternative implement before
        # core.inference_optimize being fixed.
1607
        res = Program()
1608
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
        while True:
            if read_op_idx >= root_block.op_size() or root_block.op(
                    read_op_idx).type() == 'read':
                break
            read_op_idx += 1
        if read_op_idx < root_block.op_size():
            root_block._remove_op(0, read_op_idx + 1)
        for var in root_block.all_vars():
            if var.type() == core.VarDesc.VarType.READER:
                root_block._remove_var(var.name())

        # change all `is_test` attributes to True
1625
        for i in range(res.desc.num_blocks()):
1626
            block = res.desc.block(i)
1627
            for j in range(block.op_size()):
1628 1629 1630
                op = block.op(j)
                if op.has_attr('is_test'):
                    op.set_attr('is_test', True)
1631
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
1632
        res._sync_with_cpp()
1633 1634
        return res

1635 1636
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1637 1638 1639 1640 1641 1642 1643
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1644
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1645 1646 1647 1648

        Returns:
            Program: A deserialized program desc.
        """
1649 1650
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
1651
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
1652
        p._sync_with_cpp()
1653
        return p
Y
Yu Yang 已提交
1654

D
dzhwinter 已提交
1655 1656
    @property
    def random_seed(self):
Y
yuyang18 已提交
1657 1658 1659 1660 1661 1662
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1663 1664
        return self._seed

Q
qiaolongfei 已提交
1665 1666
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1667 1668 1669
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1670 1671
        return self.desc.num_blocks()

D
dzhwinter 已提交
1672 1673 1674 1675 1676 1677
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1678
    def __repr__(self):
1679
        return self.__str__()
1680

Y
Yu Yang 已提交
1681
    def global_block(self):
Y
yuyang18 已提交
1682 1683 1684
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1685 1686
        return self.blocks[0]

Q
Qiao Longfei 已提交
1687
    def block(self, index):
Y
yuyang18 已提交
1688 1689 1690 1691 1692 1693 1694 1695
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1696 1697
        return self.blocks[index]

Y
Yu Yang 已提交
1698
    def current_block(self):
Y
yuyang18 已提交
1699 1700 1701 1702
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1703 1704
        return self.blocks[self.current_block_idx]

F
update  
fengjiayi 已提交
1705
    def create_block(self, parent_idx=None):
Y
yuyang18 已提交
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1716
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1717 1718 1719
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1720 1721 1722 1723 1724
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

    def rollback(self):
Y
yuyang18 已提交
1725 1726 1727 1728 1729
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1730 1731
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1732
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1743 1744 1745
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
1746
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
1747

W
Wu Yi 已提交
1748
    def _copy_param_info_from(self, other):
1749
        """
1750
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1751

Y
yuyang18 已提交
1752 1753 1754
        Notes: This is a very low level API. Users should not invoke it
        directly.

1755 1756 1757 1758 1759 1760 1761
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1762
            raise TypeError("_copy_param_info_from should be invoked with "
1763 1764 1765
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1766
            raise ValueError("_copy_param_info_from should be invoked with two "
1767
                             "program, with represent the same topology")
W
Wu Yi 已提交
1768
        self.global_block()._copy_param_info_from(other.global_block())
1769

F
fengjiayi 已提交
1770 1771 1772
    def copy_data_info_from(self, other):
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
1773

Y
yuyang18 已提交
1774 1775 1776
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
1777 1778 1779 1780 1781 1782 1783
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1784
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
1785 1786 1787
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1788
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
1789
                             "program, with represent the same topology")
1790
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
1791 1792 1793
            if var.is_data:
                self.global_block().var(var.name).is_data = True

1794
    def list_vars(self):
Y
yuyang18 已提交
1795 1796 1797 1798 1799 1800
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
1801
        for each_block in self.blocks:
1802
            for each_var in list(each_block.vars.values()):
1803 1804
                yield each_var

Y
Yu Yang 已提交
1805

Y
Yu Yang 已提交
1806
class Parameter(Variable):
1807
    """
1808
    Parameter is derived from Variable. A parameter is a persistable
1809
    Variable, and will be updated by optimizers after each iteration.
1810
    The training of a neural network is essentially the updating of
1811 1812
    its parameters.

1813
    Relative to a general Variable, a Parameter has several its own
1814 1815
    member variables:

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
1828 1829
    """

Y
Yu Yang 已提交
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
1840 1841 1842

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
1843 1844 1845 1846
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

1847 1848
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
1849
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
1850

W
wanghaoshuang 已提交
1851
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
1852

F
fengjiayi 已提交
1853 1854 1855
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
1856 1857 1858
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
1859

F
update  
fengjiayi 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
1874
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
1875
            for attr_name in additional_attr:
1876 1877
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
1878 1879
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
1880 1881 1882 1883
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
1884

Y
Yu Yang 已提交
1885
# program is a global instance.
Y
Yu Yang 已提交
1886 1887
_main_program_ = Program()
_startup_program_ = Program()
1888

1889

1890
def default_startup_program():
Y
Yu Yang 已提交
1891
    """
Y
yuyang18 已提交
1892 1893 1894 1895 1896 1897 1898 1899 1900
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
1901

Y
Yu Yang 已提交
1902 1903 1904
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
1905
    return _startup_program_
1906

1907

1908
def default_main_program():
Y
Yu Yang 已提交
1909
    """
Y
yuyang18 已提交
1910 1911 1912 1913 1914 1915 1916 1917 1918
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
1919

Y
Yu Yang 已提交
1920 1921 1922
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
1923
    return _main_program_
Y
Yu Yang 已提交
1924 1925 1926 1927 1928


def switch_main_program(program):
    """
    Switch the main program to a new program.
1929

Y
Yu Yang 已提交
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
1944
    Switch the startup program to a new program
Y
Yu Yang 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
1960 1961 1962
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
1963

Y
Yu Yang 已提交
1964
    Examples:
Y
yuyang18 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
1975

Y
Yu Yang 已提交
1976
    Examples:
Y
yuyang18 已提交
1977 1978 1979 1980 1981 1982

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
1983

Y
Yu Yang 已提交
1984
    Args:
Y
yuyang18 已提交
1985
        main_program(Program): New main program inside `with` statement.
1986
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2000 2001 2002 2003


def get_var(name, program=None):
    """
Y
yuyang18 已提交
2004
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2005

X
xuwei06 已提交
2006 2007 2008
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2009
        If None, default_global_program() will be used.
X
xuwei06 已提交
2010 2011 2012 2013 2014 2015 2016

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2017
    assert isinstance(program, Program)
X
xuwei06 已提交
2018 2019

    return program.global_block().var(name)