match_matrix_tensor_op.cc 13.1 KB
Newer Older
A
Aurelius84 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <fstream>
#include <iomanip>
#include <iostream>
#include <vector>

#include "paddle/fluid/operators/match_matrix_tensor_op.h"
#include "paddle/fluid/operators/search_compute.h"

namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;

void MatchMatrixTensorOP::InferShape(framework::InferShapeContext* ctx) const {
  PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                    "X(Input) of MatchMatrix should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasInput("Y"), true,
                    "Y(Input) of MatchMatrix should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasInput("W"), true,
                    "W(Input) of MatchMatrix should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                    "Out(Output) of MatchMatrix should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Tmp"), true,
                    "Tmp(Output) of MatchMatrix should not be null.");

  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2,
                    "The rank of Input(X) can't be less than 2.");

  auto y_dims = ctx->GetInputDim("Y");
  PADDLE_ENFORCE_EQ(y_dims.size(), 2,
                    "The rank of Input(Y) can't be less than 2.");

  auto w_dims = ctx->GetInputDim("W");
  PADDLE_ENFORCE_EQ(w_dims.size(), 3UL, "W should be 3-D tensor");

  int dim_t = ctx->Attrs().Get<int>("dim_t");
  PADDLE_ENFORCE_EQ(w_dims[0], x_dims[1],
                    "W 's shape must satisfy: W[0] = X[1]");
  PADDLE_ENFORCE_EQ(w_dims[1], dim_t, "W 's shape must satisfy: W[1] = dim_t");
  PADDLE_ENFORCE_EQ(w_dims[2], y_dims[1],
                    "W 's shape must satisfy: W[2] = Y[1]");

  int out_dim_0 = -1;
  int tmp_dim_0 = -1;
  if (ctx->IsRuntime()) {
    framework::Variable* x_var =
        boost::get<framework::Variable*>(ctx->GetInputVarPtrs("X")[0]);
    const auto& x_lod = x_var->Get<LoDTensor>().lod();
    PADDLE_ENFORCE_EQ(x_lod.empty(), false, "The Input(X) must hold lod info.");
    const auto& x_lod_0 = x_lod[0];
    PADDLE_ENFORCE_GE(x_lod_0.size(), 2,
                      "The Input(X)'s lod info is corrupted.");
    PADDLE_ENFORCE_EQ(
        x_dims[0], static_cast<int64_t>(x_lod_0.back()),
        "The Input(X)'s lod info mismatches the actual tensor shape.");

    framework::Variable* y_var =
        boost::get<framework::Variable*>(ctx->GetInputVarPtrs("Y")[0]);
    const auto& y_lod = y_var->Get<LoDTensor>().lod();
    PADDLE_ENFORCE_EQ(y_lod.empty(), false, "The Input(Y) must hold lod info.");
    const auto& y_lod_0 = y_lod[0];
    PADDLE_ENFORCE_GE(y_lod_0.size(), 2,
                      "The Input(Y)'s lod info is corrupted.");
    PADDLE_ENFORCE_EQ(
        y_dims[0], static_cast<int64_t>(y_lod_0.back()),
        "The Input(Y)'s lod info mismatches the actual tensor shape.");

    PADDLE_ENFORCE_EQ(x_lod_0.size(), y_lod_0.size(),
                      "The Length of X and Y must be equal.");

    out_dim_0 = 0;
    for (size_t i = 1; i < x_lod_0.size(); i++) {
      int x_len = x_lod_0[i] - x_lod_0[i - 1];
      int y_len = y_lod_0[i] - y_lod_0[i - 1];
      out_dim_0 += (x_len * y_len);
    }
    out_dim_0 *= dim_t;

    tmp_dim_0 = x_dims[0] * dim_t * x_dims[1];
  } else {
    // compile time
    framework::VarDesc* x_desc =
        boost::get<framework::VarDesc*>(ctx->GetInputVarPtrs("X")[0]);
    PADDLE_ENFORCE_GE(x_desc->GetLoDLevel(), 1);
    framework::VarDesc* y_desc =
        boost::get<framework::VarDesc*>(ctx->GetInputVarPtrs("Y")[0]);
    PADDLE_ENFORCE_GE(y_desc->GetLoDLevel(), 1);
  }

  std::vector<int64_t> out_dims_vec{out_dim_0};
  out_dims_vec.push_back(1);
  std::vector<int64_t> tmp_dims_vec{tmp_dim_0};
  tmp_dims_vec.push_back(1);
  ctx->SetOutputDim("Out", framework::make_ddim(out_dims_vec));
  ctx->SetOutputDim("Tmp", framework::make_ddim(tmp_dims_vec));
}

void MatchMatrixTensorOpGrad::InferShape(
    framework::InferShapeContext* ctx) const {
  PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                    "Input(X) of SequencePadGradOp should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasInput("Y"), true,
                    "Input(Y) of SequencePadGradOp should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasInput("W"), true,
                    "Input(W) of SequencePadGradOp should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
                    "Input(Out@GRAD) of SequencePadGradOp should not be null.");

  if (ctx->HasOutput(framework::GradVarName("X"))) {
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
  }
  if (ctx->HasOutput(framework::GradVarName("Y"))) {
    ctx->SetOutputDim(framework::GradVarName("Y"), ctx->GetInputDim("Y"));
    ctx->ShareLoD("Y", /*->*/ framework::GradVarName("Y"));
  }
  if (ctx->HasOutput(framework::GradVarName("W"))) {
    ctx->SetOutputDim(framework::GradVarName("W"), ctx->GetInputDim("W"));
  }
}

void MatchMatrixTensorOpMaker::Make() {
  AddInput("X",
           "X (LoDTensor, default LoDTensor<float>) Input variable which "
           "should contain lod information.");
  AddInput("Y",
           "Y (LoDTensor, default LoDTensor<float>) Input variable which "
           "should contain lod information.");
  AddInput("W", "W (Tensor), The weight of X and Y.");
  AddAttr<int>("dim_t", "the dim of W").SetDefault(1);
  AddOutput("Out",
            "(LoDTensor, default LoDTensor<float>) Output variable which "
            "is X * W * Y");
  AddOutput("Tmp",
            "(LoDTensor, default LoDTensor<float>) tmp variable which is "
            "used for X * W");
  AddComment(R"DOC(
      Match Matrix Tensor Operator

      This operator calculate X * W * Y, only support 2-D for X and Y.
      the output is a level-1 LodTensor: 
        level_0: dim_t
      
      NOTE: only support 'float32' data type now.

    )DOC");
}

template <typename DeviceContext, typename T>
class CPUMatchMatrixTensorOPKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<LoDTensor>("X");
    auto* y = ctx.Input<LoDTensor>("Y");
    auto* w = ctx.Input<Tensor>("W");
    auto* out = ctx.Output<LoDTensor>("Out");
    auto* tmp = ctx.Output<LoDTensor>("Tmp");

    int dim_t = ctx.Attr<int>("dim_t");
    int dim_in = x->dims()[1];

    const auto& offset_l = x->lod()[0];
    const auto& offset_r = y->lod()[0];

    std::vector<size_t> top_offset;
    int top_size = 0;
    top_offset.push_back(top_size);
    for (size_t b = 0; b < x->lod()[0].size() - 1; b++) {
      int len_l = offset_l[b + 1] - offset_l[b];
      int len_r = offset_r[b + 1] - offset_r[b];
      top_size += dim_t * len_l * len_r;
      top_offset.push_back(top_size);
    }
    auto* out_data = out->mutable_data<T>(ctx.GetPlace());
    memset(out_data, 0.0, out->dims()[0] * out->dims()[1] * sizeof(T));

    auto* bottom_l_data = x->data<T>();
    auto* bottom_r_data = y->data<T>();
    auto* t_data = w->data<T>();
    auto* bottom_l_trans_data = tmp->mutable_data<T>(ctx.GetPlace());
    memset(bottom_l_trans_data, 0.0,
           tmp->dims()[0] * tmp->dims()[1] * sizeof(T));

    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);

    call_gemm(blas, CblasNoTrans, CblasNoTrans, x->dims()[0], dim_t * dim_in,
              dim_in, 1.0f, bottom_l_data, t_data, 0.0f, bottom_l_trans_data);

    for (size_t b = 0; b < x->lod()[0].size() - 1; b++) {
      for (int t = 0; t < dim_t; t++) {
        int len_l = offset_l[b + 1] - offset_l[b];
        int len_r = offset_r[b + 1] - offset_r[b];
        auto* top_data = out_data + top_offset[b] + t * len_l * len_r;
        const auto* l_t_data =
            bottom_l_trans_data + offset_l[b] * dim_t * dim_in + t * dim_in;
        const auto* r_data = bottom_r_data + offset_r[b] * dim_in;
        auto blas_2 = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
        call_gemm_with_lda(blas_2, CblasNoTrans, CblasTrans, len_l, len_r,
                           dim_in, 1.0f, l_t_data, r_data, 0.0f, top_data,
                           dim_t * dim_in);
      }
    }

    framework::LoD out_lod;
    out_lod.push_back(top_offset);

    out->set_lod(out_lod);
  }
};

template <typename DeviceContext, typename T>
class CPUMatchMatrixTensorOPGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<LoDTensor>("X");
    auto* y = ctx.Input<LoDTensor>("Y");
    auto* w = ctx.Input<Tensor>("W");
    auto* tmp = ctx.Input<LoDTensor>("Tmp");

    int dim_t = ctx.Attr<int>("dim_t");
    int dim_in = x->dims()[1];

    const auto& offset_l = x->lod()[0];
    const auto& offset_r = y->lod()[0];
    std::vector<int> top_offset;
    int top_size = 0;
    top_offset.push_back(top_size);
    for (size_t b = 0; b < x->lod()[0].size() - 1; b++) {
      int len_l = offset_l[b + 1] - offset_l[b];
      int len_r = offset_r[b + 1] - offset_r[b];
      top_size += dim_t * len_l * len_r;
      top_offset.push_back(top_size);
    }

    auto* bottom_l_data = x->data<T>();
    auto* bottom_r_data = y->data<T>();
    auto* bottom_l_trans_data = tmp->data<T>();

    auto* d_out = ctx.Input<LoDTensor>(framework::GradVarName("Out"));
    auto* d_x = ctx.Output<LoDTensor>(framework::GradVarName("X"));
    auto* d_y = ctx.Output<LoDTensor>(framework::GradVarName("Y"));

    Tensor tmp_grad;
    tmp_grad.Resize(tmp->dims());
    auto* d_tmp_data = tmp_grad.mutable_data<T>(ctx.GetPlace());
    auto* top_diff = d_out->data<T>();
    auto* bottom_l_diff = d_x->mutable_data<T>(ctx.GetPlace());
    auto* bottom_r_diff = d_y->mutable_data<T>(ctx.GetPlace());
    auto* bottom_l_trans_diff = const_cast<T*>(d_tmp_data);
    memset(bottom_l_diff, 0.0, x->dims()[0] * x->dims()[1] * sizeof(T));
    memset(bottom_r_diff, 0.0, y->dims()[0] * y->dims()[1] * sizeof(T));
    memset(bottom_l_trans_diff, 0.0,
           tmp->dims()[0] * tmp->dims()[1] * sizeof(T));

    for (size_t b = 0; b < x->lod()[0].size() - 1; b++) {
      for (int t = 0; t < dim_t; t++) {
        int len_l = offset_l[b + 1] - offset_l[b];
        int len_r = offset_r[b + 1] - offset_r[b];

        for (int i = 0; i < len_l; i++) {
          for (int j = 0; j < len_r; j++) {
            auto diff =
                top_diff[top_offset[b] + t * len_l * len_r + i * len_r + j];
            auto* l_trans_data = bottom_l_trans_data +
                                 (offset_l[b] + i) * dim_in * dim_t +
                                 t * dim_in;
            auto* l_trans_diff = bottom_l_trans_diff +
                                 (offset_l[b] + i) * dim_in * dim_t +
                                 t * dim_in;
            auto* r_data = bottom_r_data + (offset_r[b] + j) * dim_in;
            auto* r_diff = bottom_r_diff + (offset_r[b] + j) * dim_in;
            if (diff != 0.0) {
289 290
              avx_axpy(r_data, l_trans_diff, dim_in, diff);
              avx_axpy(l_trans_data, r_diff, dim_in, diff);
A
Aurelius84 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
            }
          }
        }
      }
    }

    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);

    auto* t_data = w->data<T>();
    auto* d_w = ctx.Output<Tensor>(framework::GradVarName("W"));
    auto* t_diff = d_w->mutable_data<T>(ctx.GetPlace());
    memset(t_diff, 0.0, w->dims()[0] * w->dims()[1] * w->dims()[2] * sizeof(T));
    // bottom_diff
    call_gemm(blas, CblasNoTrans, CblasTrans, x->dims()[0], dim_in,
              dim_t * dim_in, 1.0f, bottom_l_trans_diff, t_data, 1.0f,
              bottom_l_diff);

    // t_diff
    call_gemm(blas, CblasTrans, CblasNoTrans, dim_in, dim_t * dim_in,
              x->dims()[0], 1.0f, bottom_l_data, bottom_l_trans_diff, 1.0f,
              t_diff);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(match_matrix_tensor, ops::MatchMatrixTensorOP,
                  ops::MatchMatrixTensorOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(match_matrix_tensor_grad, ops::MatchMatrixTensorOpGrad);

REGISTER_OP_CPU_KERNEL(match_matrix_tensor,
                       ops::CPUMatchMatrixTensorOPKernel<
                           paddle::platform::CPUDeviceContext, float>);
//     ops::CPUMatchMatrixTensorOPKernel<paddle::platform::CPUDeviceContext,
//                                       double>

REGISTER_OP_CPU_KERNEL(match_matrix_tensor_grad,
                       ops::CPUMatchMatrixTensorOPGradKernel<
                           paddle::platform::CPUDeviceContext, float>);
//     ops::CPUMatchMatrixTensorOPGradKernel<paddle::platform::CPUDeviceContext,
//                                           double>