roi_pool_op.h 7.3 KB
Newer Older
W
wanghaox 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/strided_memcpy.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;

template <typename Place, typename T>
W
wanghaox 已提交
28
class CPUROIPoolOpKernel : public framework::OpKernel<T> {
W
wanghaox 已提交
29 30 31
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<Tensor>("X");
W
wanghaox 已提交
32
    auto* rois = ctx.Input<Tensor>("ROIs");
W
wanghaox 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
    auto* out = ctx.Output<Tensor>("Out");
    auto* argmax = ctx.Output<Tensor>("Argmax");

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");

    auto in_dims = in->dims();
    int batch_size = in_dims[0];
    int channels = in_dims[1];
    int height = in_dims[2];
    int width = in_dims[3];
    int rois_num = rois->dims()[0];

    auto in_stride = framework::stride(in_dims);
    auto argmax_stride = framework::stride(argmax->dims());
    auto roi_stride = framework::stride(rois->dims());
W
wanghaox 已提交
50
    auto out_stride = framework::stride(out->dims());
W
wanghaox 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

    const T* input_data = in->data<T>();
    const int64_t* rois_data = rois->data<int64_t>();
    T* output_data = out->mutable_data<T>(ctx.GetPlace());
    int64_t* argmax_data = argmax->mutable_data<int64_t>(ctx.GetPlace());

    math::SetConstant<Place, T> set_zero;
    set_zero(ctx.device_context(), out, static_cast<T>(0));
    math::SetConstant<Place, int64_t> set_init;
    set_init(ctx.device_context(), argmax, static_cast<int64_t>(-1));

    for (int n = 0; n < rois_num; ++n) {
      int roi_batch_id = rois_data[0];
      PADDLE_ENFORCE_GE(roi_batch_id, 0);
      PADDLE_ENFORCE_LT(roi_batch_id, batch_size);
      rois_data += roi_stride[0];
    }

    rois_data = rois->data<int64_t>();
    for (int n = 0; n < rois_num; ++n) {
      int roi_batch_id = rois_data[0];
      int roi_start_w = round(rois_data[1] * spatial_scale);
      int roi_start_h = round(rois_data[2] * spatial_scale);
      int roi_end_w = round(rois_data[3] * spatial_scale);
      int roi_end_h = round(rois_data[4] * spatial_scale);

      // Force malformed ROIs to be 1x1
      int roi_height = std::max(roi_end_h - roi_start_h + 1, 1);
      int roi_width = std::max(roi_end_w - roi_start_w + 1, 1);

      const float bin_size_h =
          static_cast<float>(roi_height) / static_cast<float>(pooled_height);
      const float bin_size_w =
          static_cast<float>(roi_width) / static_cast<float>(pooled_width);

      const float* batch_data = input_data + roi_batch_id * in_stride[0];

      for (int c = 0; c < channels; ++c) {
        for (int ph = 0; ph < pooled_height; ++ph) {
          for (int pw = 0; pw < pooled_width; ++pw) {
            //  Compute pooling region for this output unit:
            //  start (included) = floor(ph * roi_height / pooled_height_)
            //  end (excluded) = ceil((ph + 1) * roi_height / pooled_height_)
            int hstart =
                static_cast<int>(floor(static_cast<float>(ph) * bin_size_h));
            int wstart =
                static_cast<int>(floor(static_cast<float>(pw) * bin_size_w));
            int hend =
                static_cast<int>(ceil(static_cast<float>(ph + 1) * bin_size_h));
            int wend =
                static_cast<int>(ceil(static_cast<float>(pw + 1) * bin_size_w));

            hstart = std::min(std::max(hstart + roi_start_h, 0), height);
            hend = std::min(std::max(hend + roi_start_h, 0), height);
            wstart = std::min(std::max(wstart + roi_start_w, 0), width);
            wend = std::min(std::max(wend + roi_start_w, 0), width);

            const int pool_index = ph * pooled_width + pw;

            // Define an empty pooling region to be zero
            bool is_empty = (hend <= hstart) || (wend <= wstart);
W
wanghaox 已提交
112 113
            output_data[pool_index] =
                is_empty ? 0 : -std::numeric_limits<float>::max();
W
wanghaox 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
                const int index = h * width + w;
                if (batch_data[index] > output_data[pool_index]) {
                  output_data[pool_index] = batch_data[index];
                  argmax_data[pool_index] = index;
                }
              }
            }
          }
        }

        batch_data += in_stride[1];
        output_data += out_stride[1];
        argmax_data += argmax_stride[1];
      }
      // Increment ROI data pointer
      rois_data += roi_stride[0];
    }
    return;
  }
};

template <typename Place, typename T>
W
wanghaox 已提交
139
class CPUROIPoolGradOpKernel : public framework::OpKernel<T> {
W
wanghaox 已提交
140 141 142
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<Tensor>("X");
W
wanghaox 已提交
143
    auto* rois = ctx.Input<Tensor>("ROIs");
W
wanghaox 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
    auto* argmax = ctx.Input<Tensor>("Argmax");

    auto* out_grad =
        ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* x_grad =
        ctx.Output<Tensor>(framework::GradVarName("X"));

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");

    if (x_grad) {
      int channels = in->dims()[1];
      auto in_stride = framework::stride(in->dims());
      auto roi_stride = framework::stride(rois->dims());

      const int64_t* rois_data = rois->data<int64_t>();
      int rois_num = rois->dims()[0];

      T* x_grad_data = x_grad->mutable_data<T>(ctx.GetPlace());
      math::SetConstant<Place, T> set_zero;
      set_zero(ctx.device_context(), x_grad, static_cast<T>(0));

      size_t roi_offset = roi_stride[0];
      size_t batch_offset = in_stride[0];
      size_t channel_offset = in_stride[1];

      const T* out_grad_data = out_grad->data<T>();
      size_t pool_channel_offset = pooled_height * pooled_width;
      const int64_t* argmax_data = argmax->data<int64_t>();

      for (size_t n = 0; n < rois_num; ++n) {
        size_t roi_batch_idx = rois_data[0];
        T* batch_grad_data = x_grad_data + batch_offset * roi_batch_idx;
W
wanghaox 已提交
177 178 179
        for (int c = 0; c < channels; ++c) {
          for (int ph = 0; ph < pooled_height; ++ph) {
            for (int pw = 0; pw < pooled_width; ++pw) {
W
wanghaox 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
              size_t pool_index = ph * pooled_width + pw;

              if (argmax_data[pool_index] >= 0) {
                size_t index = static_cast<size_t>(argmax_data[pool_index]);
                batch_grad_data[index] += out_grad_data[pool_index];
              }
            }
          }
          batch_grad_data += channel_offset;
          out_grad_data += pool_channel_offset;
          argmax_data += pool_channel_offset;
        }
        rois_data += roi_offset;
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle