analysis_config.cc 17.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
17
#include "paddle/fluid/platform/cpu_info.h"
18
#include "paddle/fluid/platform/enforce.h"
19
#include "paddle/fluid/platform/gpu_info.h"
20

21
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
22 23 24
DECLARE_uint64(initial_gpu_memory_in_mb);
#endif

25
namespace paddle {
W
wanghuancoder 已提交
26 27
struct MkldnnQuantizerConfig;

28
extern const std::vector<std::string> kTRTSubgraphPasses;
石晓伟 已提交
29
extern const std::vector<std::string> kLiteSubgraphPasses;
30

31
PassStrategy *AnalysisConfig::pass_builder() const {
32 33 34 35
  if (!pass_builder_.get()) {
    if (use_gpu_) {
      LOG(INFO) << "Create GPU IR passes";
      pass_builder_.reset(new GpuPassStrategy);
36 37
    } else if (use_xpu_) {
      pass_builder_.reset(new XpuPassStrategy);
38 39 40 41 42 43 44 45 46 47 48 49
    } else {
      LOG(INFO) << "Create CPU IR passes";
      pass_builder_.reset(new CpuPassStrategy);
    }
  } else if (pass_builder_->use_gpu() ^ use_gpu()) {
    LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
                    "PassBuilder, the flags are "
                 << use_gpu() << " " << pass_builder_->use_gpu();
    LOG(WARNING) << "Please make them compatible, still use the existing "
                    "PassBuilder.";
  }

50 51 52
  return pass_builder_.get();
}

53
AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
54
  model_dir_ = model_dir;
Y
Yan Chunwei 已提交
55 56

  Update();
57
}
58 59
AnalysisConfig::AnalysisConfig(const std::string &prog_file,
                               const std::string &params_file) {
60 61
  prog_file_ = prog_file;
  params_file_ = params_file;
Y
Yan Chunwei 已提交
62 63

  Update();
64
}
65 66
void AnalysisConfig::SetModel(const std::string &prog_file_path,
                              const std::string &params_file_path) {
67 68
  prog_file_ = prog_file_path;
  params_file_ = params_file_path;
Y
Yan Chunwei 已提交
69 70

  Update();
71
}
72 73
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
                                  int device_id) {
74
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
75 76
  use_gpu_ = true;
  memory_pool_init_size_mb_ = memory_pool_init_size_mb;
77
  FLAGS_initial_gpu_memory_in_mb = memory_pool_init_size_mb_;
78
  gpu_device_id_ = device_id;
79
#else
Y
Yan Chunwei 已提交
80
  LOG(ERROR) << "Please compile with gpu to EnableGpu()";
81 82
  use_gpu_ = false;
#endif
Y
Yan Chunwei 已提交
83 84 85

  Update();
}
86
void AnalysisConfig::DisableGpu() {
Y
Yan Chunwei 已提交
87 88 89
  use_gpu_ = false;

  Update();
90 91
}

92 93 94 95 96 97
void AnalysisConfig::DisableFCPadding() {
  use_fc_padding_ = false;

  Update();
}

98 99 100 101 102 103
void AnalysisConfig::EnableXpu(int l3_workspace_size) {
  use_xpu_ = true;
  xpu_l3_workspace_size_ = l3_workspace_size;
  Update();
}

104
AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
105 106 107 108 109 110
#define CP_MEMBER(member__) member__ = other.member__;

  // Model related.
  CP_MEMBER(model_dir_);
  CP_MEMBER(model_from_memory_);  // the memory model reuses prog_file_ and
                                  // params_file_ fields.
111

112
  CP_MEMBER(opt_cache_dir_);
W
Wilber 已提交
113 114
  CP_MEMBER(prog_file_);
  CP_MEMBER(params_file_);
115

116
  CP_MEMBER(use_fc_padding_);
117
  // GPU related.
118
  CP_MEMBER(use_gpu_);
119
  CP_MEMBER(use_cudnn_);
120 121
  CP_MEMBER(gpu_device_id_);
  CP_MEMBER(xpu_device_id_);
122
  CP_MEMBER(memory_pool_init_size_mb_);
Y
Yan Chunwei 已提交
123 124

  CP_MEMBER(enable_memory_optim_);
S
Sylwester Fraczek 已提交
125
  // TensorRT related.
126 127 128 129
  CP_MEMBER(use_tensorrt_);
  CP_MEMBER(tensorrt_workspace_size_);
  CP_MEMBER(tensorrt_max_batchsize_);
  CP_MEMBER(tensorrt_min_subgraph_size_);
N
nhzlx 已提交
130
  CP_MEMBER(tensorrt_precision_mode_);
131
  CP_MEMBER(trt_disabled_ops_);
132 133
  CP_MEMBER(trt_use_dla_);
  CP_MEMBER(trt_dla_core_);
N
nhzlx 已提交
134
  CP_MEMBER(trt_use_static_engine_);
135
  CP_MEMBER(trt_use_calib_mode_);
136
  CP_MEMBER(trt_use_oss_);
S
Sylwester Fraczek 已提交
137
  // MKLDNN related.
138 139
  CP_MEMBER(use_mkldnn_);
  CP_MEMBER(mkldnn_enabled_op_types_);
140
  CP_MEMBER(mkldnn_cache_capacity_);
141 142 143
  // Bfloat16 related.
  CP_MEMBER(use_mkldnn_bfloat16_);
  CP_MEMBER(bfloat16_enabled_op_types_);
144 145 146
  // Quantization related.
  CP_MEMBER(use_mkldnn_quantizer_);
  CP_MEMBER(mkldnn_quantizer_config_);
147 148 149
  CP_MEMBER(min_input_shape_);
  CP_MEMBER(max_input_shape_);
  CP_MEMBER(optim_input_shape_);
150
  CP_MEMBER(disable_trt_plugin_fp16_);
151

石晓伟 已提交
152 153 154 155
  CP_MEMBER(use_lite_);
  CP_MEMBER(lite_precision_mode_);
  CP_MEMBER(lite_passes_filter_);
  CP_MEMBER(lite_ops_filter_);
156 157 158 159
  CP_MEMBER(lite_zero_copy_);

  CP_MEMBER(use_xpu_);
  CP_MEMBER(xpu_l3_workspace_size_);
石晓伟 已提交
160

161 162 163
  // profile related.
  CP_MEMBER(with_profile_);

164 165 166
  // glog related.
  CP_MEMBER(with_glog_info_);

167 168 169 170 171 172 173 174 175 176
  // Ir related.
  CP_MEMBER(enable_ir_optim_);
  CP_MEMBER(use_feed_fetch_ops_);
  CP_MEMBER(ir_debug_);
  CP_MEMBER(specify_input_name_);

  CP_MEMBER(cpu_math_library_num_threads_);

  CP_MEMBER(serialized_info_cache_);

177 178
  CP_MEMBER(thread_local_stream_);

179
  if (use_gpu_) {
180 181 182
    PADDLE_ENFORCE_EQ(use_xpu_, false,
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
183 184
    pass_builder_.reset(new GpuPassStrategy(
        *static_cast<GpuPassStrategy *>(other.pass_builder())));
185 186 187
  } else if (use_xpu_) {
    pass_builder_.reset(new XpuPassStrategy(
        *static_cast<XpuPassStrategy *>(other.pass_builder())));
188 189 190 191 192
  } else {
    pass_builder_.reset(new CpuPassStrategy(
        *static_cast<CpuPassStrategy *>(other.pass_builder())));
  }

193
#undef CP_MEMBER
Y
Yan Chunwei 已提交
194

W
Wilber 已提交
195 196 197 198 199 200 201
  Update();
  if (use_tensorrt_) {
    // Update() will reset all the passes, when some tensorRT pass is deleted in
    // other.pass_builder(), it will set again, so we just remove the
    // deleted_pass.
    auto all_passes = kTRTSubgraphPasses;
    auto other_passes = other.pass_builder()->AllPasses();
W
Wilber 已提交
202 203 204 205
    // We should sort them, because the user may call the SwitchIrDebug
    // interface, which will change the pass.
    std::sort(all_passes.begin(), all_passes.end());
    std::sort(other_passes.begin(), other_passes.end());
W
Wilber 已提交
206 207 208 209 210 211 212
    std::vector<std::string> deleted_passes;
    std::set_difference(all_passes.begin(), all_passes.end(),
                        other_passes.begin(), other_passes.end(),
                        std::inserter(deleted_passes, deleted_passes.begin()));
    for (auto ps : deleted_passes) {
      pass_builder_->DeletePass(ps);
    }
213
  }
214 215
}

216
void AnalysisConfig::EnableCUDNN() {
217
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
218 219 220 221 222 223 224 225 226
  use_cudnn_ = use_gpu_;
#else
  LOG(ERROR) << "Please compile with CUDA first to use cuDNN";
  use_cudnn_ = false;
#endif

  Update();
}

227
void AnalysisConfig::EnableMKLDNN() {
228 229 230 231 232 233
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
  use_mkldnn_ = false;
#endif
Y
Yan Chunwei 已提交
234 235

  Update();
236 237
}

238 239 240 241 242 243 244 245 246
void AnalysisConfig::SetMkldnnCacheCapacity(int capacity) {
#ifdef PADDLE_WITH_MKLDNN
  mkldnn_cache_capacity_ = capacity;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to set MKLDNN Thread Id";
  mkldnn_cache_capacity_ = 0;
#endif
}

247 248 249 250 251 252 253 254 255 256 257 258 259
void AnalysisConfig::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_config_)
    mkldnn_quantizer_config_.reset(new MkldnnQuantizerConfig());
  use_mkldnn_quantizer_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  use_mkldnn_quantizer_ = false;
#endif

  Update();
}

260 261
void AnalysisConfig::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
262 263
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core)) {
    use_mkldnn_bfloat16_ = true;
264 265 266 267
    LOG(INFO) << "Hardware support for BFLOAT16"
              << (platform::MayIUse(platform::cpu_isa_t::avx512_bf16)
                      ? " is enabled"
                      : " is disabled. Simulation will be used");
268 269 270 271
  } else {
    LOG(INFO) << "CPU does not support BFLOAT16 calculations";
    use_mkldnn_bfloat16_ = false;
  }
272 273 274 275 276 277 278 279
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnBfloat16";
  use_mkldnn_bfloat16_ = false;
#endif

  Update();
}

280
MkldnnQuantizerConfig *AnalysisConfig::mkldnn_quantizer_config() const {
281
  PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_,
282 283
                          platform::errors::PreconditionNotMet(
                              "MkldnnQuantizer was not enabled yet."));
284
  return mkldnn_quantizer_config_.get();
285 286
}

287
void AnalysisConfig::EnableTensorRtEngine(
N
nhzlx 已提交
288
    int workspace_size, int max_batch_size, int min_subgraph_size,
289
    AnalysisConfig::Precision precision_mode, bool use_static,
290
    bool use_calib_mode) {
291
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yan Chunwei 已提交
292 293 294 295 296
  if (!use_gpu()) {
    LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first";
    return;
  }

297 298 299
  use_tensorrt_ = true;
  tensorrt_workspace_size_ = workspace_size;
  tensorrt_max_batchsize_ = max_batch_size;
N
nhzlx 已提交
300
  tensorrt_min_subgraph_size_ = min_subgraph_size;
N
nhzlx 已提交
301
  tensorrt_precision_mode_ = precision_mode;
N
nhzlx 已提交
302
  trt_use_static_engine_ = use_static;
303
  trt_use_calib_mode_ = use_calib_mode;
Y
Yan Chunwei 已提交
304

305
  Update();
Y
Yan Chunwei 已提交
306 307 308 309
#else
  LOG(ERROR)
      << "To use TensorRT engine, please compile inference lib with GPU first.";
#endif
310 311
}

312 313 314 315 316 317 318 319 320 321 322
void AnalysisConfig::SetTRTDynamicShapeInfo(
    std::map<std::string, std::vector<int>> min_input_shape,
    std::map<std::string, std::vector<int>> max_input_shape,
    std::map<std::string, std::vector<int>> optim_input_shape,
    bool disable_trt_plugin_fp16) {
  min_input_shape_ = min_input_shape;
  max_input_shape_ = max_input_shape;
  optim_input_shape_ = optim_input_shape;
  disable_trt_plugin_fp16_ = disable_trt_plugin_fp16;
}

323 324 325 326 327
void AnalysisConfig::EnableTensorRtDLA(int dla_core) {
  trt_use_dla_ = true;
  trt_dla_core_ = dla_core;
}

328 329 330 331 332
void AnalysisConfig::Exp_DisableTensorRtOPs(
    const std::vector<std::string> &ops) {
  trt_disabled_ops_.insert(trt_disabled_ops_.end(), ops.begin(), ops.end());
}

333
void AnalysisConfig::EnableTensorRtOSS() { trt_use_oss_ = true; }
334

Y
Yan Chunwei 已提交
335
// TODO(Superjomn) refactor this, buggy.
336
void AnalysisConfig::Update() {
337 338 339
  auto info = SerializeInfoCache();
  if (info == serialized_info_cache_) return;

Y
Yan Chunwei 已提交
340 341 342 343 344 345 346 347 348
  // Transfer pass_builder and copy the existing compatible passes.
  if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu()))) {
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy);

      if (use_tensorrt_) {
        // Append after the Affine_channel_conv_fuse pass.
        pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
      }
349 350 351 352 353 354
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy);
Y
Yan Chunwei 已提交
355 356 357
    } else {
      pass_builder_.reset(new CpuPassStrategy);
    }
358

359
  } else {
Y
Yan Chunwei 已提交
360 361 362
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy(
          *static_cast<GpuPassStrategy *>(pass_builder_.get())));
363 364 365 366 367 368 369
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy(
          *static_cast<XpuPassStrategy *>(pass_builder_.get())));
Y
Yan Chunwei 已提交
370 371 372 373
    } else {
      pass_builder_.reset(new CpuPassStrategy(
          *static_cast<CpuPassStrategy *>(pass_builder_.get())));
    }
374 375 376
  }

  if (use_tensorrt_) {
377 378
    pass_builder()->ClearPasses();
    for (const auto &pass : kTRTSubgraphPasses) {
379
      if (tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
380
          (pass == "conv_bn_fuse_pass")) {
381 382
        continue;
      }
383
      pass_builder()->AppendPass(pass);
384 385
    }
  }
386
  if (use_gpu() && use_cudnn_) {
387
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
388 389 390 391 392 393 394 395
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableCUDNN() only works when IR optimization is enabled.";
    } else {
      pass_builder()->EnableCUDNN();
    }
#endif
  }

396
  if (use_mkldnn_) {
W
Wojciech Uss 已提交
397
#ifdef PADDLE_WITH_MKLDNN
398 399 400
    if (!enable_ir_optim_) {
      LOG(ERROR)
          << "EnableMKLDNN() only works when IR optimization is enabled.";
W
Wojciech Uss 已提交
401 402
    } else {
      pass_builder()->EnableMKLDNN();
403 404 405 406
    }
#endif
  }

407 408 409 410 411
  // Quantization passes must come after all other optimization passes
  if (use_mkldnn_quantizer_) {
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnQuantizer() only works when IR optimization "
                    "is enabled.";
412 413
    }
#ifdef PADDLE_WITH_MKLDNN
414
    pass_builder()->EnableMkldnnQuantizer();
415 416 417
#endif
  }

418 419 420 421 422 423
  if (use_mkldnn_bfloat16_) {
#ifdef PADDLE_WITH_MKLDNN
    pass_builder()->EnableMkldnnBfloat16();
#endif
  }

424
#ifdef PADDLE_WITH_MKLDNN
425 426
  // Do not optimize when mkldnn is on
  if (enable_memory_optim_ && !use_mkldnn_) {
427
#else
Y
Yan Chunwei 已提交
428
  if (enable_memory_optim_) {
429 430
#endif
    pass_builder()->AppendAnalysisPass("memory_optimize_pass");
Y
Yan Chunwei 已提交
431 432
  }

石晓伟 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446
  if (use_lite_) {
#ifndef PADDLE_WITH_LITE
    LOG(WARNING) << "You tried to enable the lite subgraph "
                    "but did not have the option -DWITH_LITE compiled.";
#endif
    pass_builder()->ClearPasses();
    for (const auto &pass : kLiteSubgraphPasses) {
      if (std::find(lite_passes_filter_.begin(), lite_passes_filter_.end(),
                    pass) == lite_passes_filter_.end()) {
        pass_builder()->AppendPass(pass);
      }
    }
  }

447
  if (use_xpu_) {
448
#if (defined LITE_SUBGRAPH_WITH_XPU) || (defined PADDLE_WITH_XPU)
449 450 451 452
    PADDLE_ENFORCE_EQ(use_gpu_, false,
                      platform::errors::Unavailable(
                          "Currently, XPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
453 454 455 456 457
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an XPU device, but Paddle was not compiled "
        "with XPU-runtime."));
#endif
458 459
  }

460 461 462 463 464
  if (ir_debug_) {
    pass_builder()->TurnOnDebug();
  }
}

465
std::string AnalysisConfig::SerializeInfoCache() {
466
  std::stringstream ss;
Y
Yan Chunwei 已提交
467 468 469 470
  ss << model_dir_;
  ss << prog_file_;
  ss << params_file_;

471
  ss << use_gpu_;
472
  ss << use_fc_padding_;
473 474
  ss << gpu_device_id_;
  ss << xpu_device_id_;
475 476 477 478 479
  ss << memory_pool_init_size_mb_;

  ss << use_tensorrt_;
  ss << tensorrt_workspace_size_;
  ss << tensorrt_max_batchsize_;
Y
Yan Chunwei 已提交
480 481
  ss << tensorrt_min_subgraph_size_;

482 483 484
  for (auto &op : trt_disabled_ops_) ss << op.c_str();
  ss << ";";

485 486 487
  ss << trt_use_dla_;
  ss << trt_dla_core_;

Y
Yan Chunwei 已提交
488
  ss << enable_memory_optim_;
489 490

  ss << use_mkldnn_;
491
  ss << mkldnn_cache_capacity_;
Y
Yan Chunwei 已提交
492 493 494
  for (auto &item : mkldnn_enabled_op_types_) ss << item;
  ss << ";";

495
  ss << use_mkldnn_quantizer_;
496
  ss << use_mkldnn_bfloat16_;
497 498
  for (auto &item : bfloat16_enabled_op_types_) ss << item;
  ss << ";";
Y
Yan Chunwei 已提交
499 500
  ss << model_from_memory_;

501 502
  ss << with_profile_;

503 504
  ss << with_glog_info_;

505 506 507 508
  ss << enable_ir_optim_;
  ss << use_feed_fetch_ops_;
  ss << ir_debug_;

Y
Yan Chunwei 已提交
509 510
  ss << specify_input_name_;
  ss << cpu_math_library_num_threads_;
石晓伟 已提交
511 512

  ss << use_lite_;
513 514
  ss << use_xpu_;
  ss << xpu_l3_workspace_size_;
515

516 517
  ss << thread_local_stream_;

518 519 520
  return ss.str();
}

521
void AnalysisConfig::SetCpuMathLibraryNumThreads(
522 523
    int cpu_math_library_num_threads) {
  cpu_math_library_num_threads_ = cpu_math_library_num_threads;
Y
Yan Chunwei 已提交
524 525

  Update();
526 527
}

528
float AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
529
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
530 531
  // Get the GPU memory details and calculate the fraction of memory for the
  // GPU memory pool.
532
  size_t gpu_total, gpu_available;
533
  platform::SetDeviceId(gpu_device_id_);
534 535
  platform::GpuMemoryUsage(&gpu_available, &gpu_total);
  double total_gpu_memory = gpu_total / 1024. / 1024.;
536 537
  float fraction_of_gpu_memory =
      static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
538 539 540 541
  VLOG(3) << "total_gpu_memory is " << total_gpu_memory
          << "M, gpu_available is " << gpu_available / 1024. / 1024.
          << "M, memory_pool_init_size is " << memory_pool_init_size_mb()
          << "M.";
542 543 544 545
  return fraction_of_gpu_memory;
#else
  return 0.;
#endif
546 547
}

548
void AnalysisConfig::EnableMemoryOptim() {
Y
Yan Chunwei 已提交
549 550 551 552
  enable_memory_optim_ = true;
  Update();
}

553
bool AnalysisConfig::enable_memory_optim() const {
Y
Yan Chunwei 已提交
554 555 556
  return enable_memory_optim_;
}

557 558 559 560
void AnalysisConfig::SetModelBuffer(const char *prog_buffer,
                                    size_t prog_buffer_size,
                                    const char *param_buffer,
                                    size_t param_buffer_size) {
561 562
  prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
  params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
T
Tao Luo 已提交
563
  model_from_memory_ = true;
Y
Yan Chunwei 已提交
564 565

  Update();
T
Tao Luo 已提交
566 567
}

568
NativeConfig AnalysisConfig::ToNativeConfig() const {
Y
Yan Chunwei 已提交
569 570 571 572 573
  NativeConfig config;
  config.model_dir = model_dir_;
  config.prog_file = prog_file_;
  config.param_file = params_file_;
  config.use_gpu = use_gpu_;
574
  config.device = gpu_device_id_;
Y
Yan Chunwei 已提交
575 576 577 578 579
  config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
  config.specify_input_name = specify_input_name_;
  return config;
}

Y
Yan Chunwei 已提交
580 581 582 583
void AnalysisConfig::SwitchIrDebug(int x) {
  ir_debug_ = x;
  Update();
}
584 585 586 587 588 589

void AnalysisConfig::EnableProfile() {
  with_profile_ = true;
  Update();
}

590 591 592 593 594
void AnalysisConfig::DisableGlogInfo() {
  with_glog_info_ = false;
  Update();
}

石晓伟 已提交
595
void AnalysisConfig::EnableLiteEngine(
596
    AnalysisConfig::Precision precision_mode, bool zero_copy,
石晓伟 已提交
597 598 599 600 601 602
    const std::vector<std::string> &passes_filter,
    const std::vector<std::string> &ops_filter) {
  use_lite_ = true;
  lite_precision_mode_ = precision_mode;
  lite_passes_filter_ = passes_filter;
  lite_ops_filter_ = ops_filter;
603
  lite_zero_copy_ = zero_copy;
石晓伟 已提交
604 605 606
  Update();
}

607 608 609 610 611 612 613
void AnalysisConfig::PartiallyRelease() {
  prog_file_.clear();
  prog_file_.shrink_to_fit();
  params_file_.clear();
  params_file_.shrink_to_fit();
}

614 615
void AnalysisConfig::EnableGpuMultiStream() { thread_local_stream_ = true; }

616
}  // namespace paddle