auto_parallel_data_parallel_optimization.py 23.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import OrderedDict
16
import numpy as np
17 18

import paddle
19
from paddle.fluid import core, unique_name
20
from paddle.fluid.framework import default_main_program
21
from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY
22
from paddle.distributed.auto_parallel.operators.common import is_data_parallel_scale_op, is_data_parallel_reduce_op
23
from paddle.distributed.auto_parallel.utils import is_loss_grad_op, is_optimize_op, is_backward_op, ring_id_to_process_group, find_higher_order_backward_op
24 25 26 27 28 29 30 31
from .pass_base import PassBase, PassType, register_pass

# add new optimizers supporting rescale_grad here
__rescale_grad_supported_opts__ = [
    'lars_momentum', 'sparse_momentum', 'dgc_momentum', 'momentum',
    'merge_momentum'
]

32 33 34
# a heuristic number
__max_stream_num_allow__ = 16

35

36 37 38 39
def numel(var):
    return np.prod(list(var.shape))


40 41 42 43
@register_pass("auto_parallel_data_parallel_optimization")
class DataParallelOptimizationPass(PassBase):
    """
    Apply Optimizations that specialized for data parallelism in Auto Parallel.
44
    1. prune grad scaling
45 46 47 48 49 50 51 52 53
    2. overlap comm and calc
    3. fuse allreduce
    """

    def __init__(self):
        super(DataParallelOptimizationPass, self).__init__()
        # NOTE not use depence on loss and param_grads
        self.set_attr("dist_context", None)
        self.set_attr("global_rank", -1)
54
        self.set_attr("use_sharding", False)
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
        # {grad1: group1, grad2: group1, grad3: group2}
        # record the order for fuse grad data memory
        self._grad_name_to_group_map = OrderedDict()
        # {group1:[grad1, grad2] , group2:[grad3]}
        self._group_to_grad_name_map = OrderedDict()
        self._support_rescale_grad = False

    def _check_self(self):
        if self.get_attr("dist_context") is None:
            return False
        if (not isinstance(self.get_attr("global_rank"),
                           int)) or self.get_attr("global_rank") < 0:
            return False

        return True

    def _check_conflict(self, other_pass):
        return True

    def _type(self):
        return PassType.COMM_OPT

    def _apply_single_impl(self, main_program, startup_program, context):

        self.dist_context = self.get_attr("dist_context")
        self.global_rank = int(self.get_attr("global_rank"))
81
        self.use_sharding = self.get_attr("use_sharding")
82 83 84 85

        with paddle.static.program_guard(main_program, startup_program):
            self._analyze_program()
            self._prune_grad_scaling()
86
            self._calc_comm_overlap()
87 88 89
            grad_group = self._fuse_allreduce()

        # self.summary(grad_group)
90 91 92 93 94 95 96 97 98 99 100 101 102

    def _prune_grad_scaling(self):

        if not self._could_be_prune():
            return

        if self._all_dp_groups_same_degree():
            self._scale_backward_initial_grad()
        else:
            self._update_opt_rescale_grad()

        self._remove_grad_scaling()

103 104 105
    def _calc_comm_overlap(self):
        if not self._could_be_overlap():
            return
106 107
        self._comms_overlap_calc()
        self._calc_wait_comms()
108 109

    def _fuse_allreduce(self):
110 111 112 113 114 115

        if not self._could_be_fuse():
            return []

        grad_group = self._group_grads()
        self._update_program(grad_group)
116

117
        return grad_group
118 119 120

    def _analyze_program(self):
        """
121
        build two maps
122 123 124 125 126 127 128 129 130
        {param_grad_name: data_parallel_group}
        {pdata_parallel_group: aram_grad_name}
        """

        block = default_main_program().global_block()
        ops = block.ops
        scaled_grads = []

        for op in ops:
131

132
            if is_data_parallel_reduce_op(op):
133
                grad_name = op.output_arg_names[0]
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
                if grad_name in self._grad_name_to_group_map:
                    continue
                assert op.has_attr(
                    "ring_id"
                ), "Unexception: comm op [{}] has NOT ring id.".format(str(op))
                group = ring_id_to_process_group(op.attr("ring_id"))

                assert group is not None, "Unexception: data parallel group of [{}] from op [{}] is None".format(
                    grad_name, str(op))

                self._grad_name_to_group_map[grad_name] = group

                if group not in self._group_to_grad_name_map:
                    self._group_to_grad_name_map[group] = [grad_name]
                else:
                    self._group_to_grad_name_map[group].append(grad_name)

            elif is_data_parallel_scale_op(op):
152
                grad_name = op.output_arg_names[0]
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
                scaled_grads.append(grad_name)

            # TODO support multiple optimizers in on network in future.
            # here we assume that the optimizer is unique in network.
            elif is_optimize_op(
                    op) and op.type in __rescale_grad_supported_opts__:
                self._support_rescale_grad = True

        not_synchronized_grads = []
        for grad_name in scaled_grads:
            if grad_name not in self._grad_name_to_group_map:
                not_synchronized_grads.append(grad_name)
        assert len(
            not_synchronized_grads
        ) == 0, "Unexception: gradients [{}] is scaled BUT NOT synchronized.".format(
            not_synchronized_grads)

    def _could_be_prune(self):

172
        return self.dist_context.gradient_scale and (
J
JZ-LIANG 已提交
173
            self._support_rescale_grad or self._all_dp_groups_same_degree())
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

    def _all_dp_groups_same_degree(self):
        return len(
            set([
                len(group.ranks)
                for group in self._group_to_grad_name_map.keys()
            ])) == 1

    def _scale_backward_initial_grad(self):

        block = default_main_program().global_block()
        dp_degree = len(list(self._group_to_grad_name_map.keys())[0].ranks)

        for idx, op in reversed(list(enumerate(block.ops))):
            if is_loss_grad_op(op):
                assert op.type == 'fill_constant', \
                    "loss_grad_op must be fill_constant op, " \
                    "but this op is {}".format(op.type)
                assert op.has_attr('value')
                loss_scale = float(op.attr('value'))
                loss_scale = loss_scale / dp_degree
                op._set_attr('value', loss_scale)
                break

    def _remove_grad_scaling(self):
        block = default_main_program().global_block()

        for op_idx, op in reversed(list(enumerate(block.ops))):
            if is_data_parallel_scale_op(op):
                block._remove_op(op_idx, False)

        block._sync_with_cpp()

    def _update_opt_rescale_grad(self):

        block = default_main_program().global_block()
        scaled_grads = set()

        for idx, op in reversed(list(enumerate(block.ops))):
            if is_optimize_op(
                    op) and op.type in __rescale_grad_supported_opts__:
                assert op.has_attr(
                    'rescale_grad'
                ), "Unexception: op [{}] is supported to have [rescale_grad] attribute.".format(
                    str(op))
                assert len(
                    op.input("Grad")
                ) == 1, "Unexception: op [{}] is supported to have only one input grad var.".format(
                    str(op))

                grad_name = op.input("Grad")[0]
                dp_degree = len(
                    list(self._grad_name_to_group_map[grad_name].ranks))
                scaled_grads.add(grad_name)

                rescale_grad = float(op.attr('rescale_grad')) / dp_degree
                op._set_attr('rescale_grad', rescale_grad)

        assert scaled_grads == set(self._grad_name_to_group_map.keys(
        )), "Unexception: gradients [{}] are unscaled.".format(
            set(self._grad_name_to_group_map.keys()) - scaled_grads)
235 236 237 238 239 240 241 242 243

    def _could_be_overlap(self):
        # NOTE current different nccl comm will use different cuda stream
        # so if there too many dp group there will be too many stream need to be
        # created and sync.
        # revise here when framework support custom stream in static mode.
        num_dp_comm_stream = len(set(self._group_to_grad_name_map.keys()))
        if num_dp_comm_stream > __max_stream_num_allow__:
            return False
244 245
        if self.use_sharding:
            return False
246 247
        return True

248
    def _comms_overlap_calc(self):
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
        # TODO support InterpreterCore executor for overlap.
        # InterpreterCore has a different logic for overlapping
        # which is different from use_calc_stream
        block = default_main_program().global_block()
        ops = block.ops

        # comm wait calc to finish
        for idx, op in reversed(list(enumerate(block.ops))):
            if is_data_parallel_reduce_op(op):
                assert op.has_attr('use_calc_stream')
                assert op.has_attr('ring_id')

                op._set_attr('use_calc_stream', False)
                ring_id = op.attr("ring_id")

                block._insert_op_without_sync(idx,
                                              type='c_wait_compute',
                                              inputs={'X': []},
                                              outputs={'Out': []},
                                              attrs={
                                                  'op_role': OpRole.Backward,
                                                  'ring_id': ring_id
                                              })

        block._sync_with_cpp()

275
    def _calc_wait_comms(self):
276 277 278 279

        block = default_main_program().global_block()
        ops = block.ops

280 281 282 283 284 285 286 287 288 289 290
        # NOTE the naive overlap implement in static hybird parallel only sync comm stream
        # at the end of Backward phase, based on a strong constraint that
        # all communicating gradient would NOT be used after communication in Backward phase.
        # BUT this constraint will fail for scenario like Weight-Sharing and Higher-Order Differentiation,
        # where gradient will be involved in other calculation between data-parallel allreduce kernel submmited
        # into comm streams and the synchronization of comm stream at the end of Backward phase.
        # synchronization of  comm stream should add according to the usage of communicating gradients
        # to support Overlapping for Weight-Sharing and Higher-Order Differentiation.

        ring_id_to_un_sync_grad_map = {}
        op_idx_to_sync_ring_id_map = {}
291
        for group in self._group_to_grad_name_map.keys():
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
            ring_id_to_un_sync_grad_map[group.id] = []

        # analyze the where need to sync
        for i, op in enumerate(ops):
            if is_data_parallel_reduce_op(op):
                ring_id = op.attr("ring_id")
                grad_name = op.output_arg_names[0]
                ring_id_to_un_sync_grad_map[ring_id].append(grad_name)
            elif is_data_parallel_scale_op(op):
                continue
            # other ops that might use communicating grad
            else:
                for input_var_name in op.input_arg_names:
                    for ring_id, unsync_grad_names in ring_id_to_un_sync_grad_map.items(
                    ):
                        if input_var_name in unsync_grad_names:
                            # need to sync before op_i
                            if i in op_idx_to_sync_ring_id_map:
                                op_idx_to_sync_ring_id_map[i].append(ring_id)
                            else:
                                op_idx_to_sync_ring_id_map[i] = [ring_id]
                            # all grads in this comm stream are synced
                            ring_id_to_un_sync_grad_map[ring_id] = []

        # insert synchronization
        indices = list(op_idx_to_sync_ring_id_map.keys())
        # TODO the synchronization could be optimized
        # we should record the event of a gradient is communicating and
        # only wait for that event to be completed.
        # BUT paddle static currently not support op api for event record only, so
        # here we try to wait for all kernel in that comm stream to be finish which is not that optimized.
        for i in sorted(indices, reverse=True):
            for ring_id in op_idx_to_sync_ring_id_map[i]:

                block._insert_op_without_sync(i,
                                              type='c_wait_comm',
                                              inputs={'X': []},
                                              outputs={'Out': []},
                                              attrs={
                                                  'op_role': OpRole.Backward,
                                                  'ring_id': ring_id
                                              })
334 335 336 337 338 339 340 341 342 343 344 345 346 347

    def _could_be_fuse(self):
        # TODO  support gradient fuse higher order gradient.
        # should analyse the dependencies of gradient in backward.
        if find_higher_order_backward_op(default_main_program()):
            return False
        if self.use_sharding:
            return False
        return True

    def _group_grads(self):
        """
        conditions for gradients to be grouped:
        1. group size < max_fuse_numel
348
        2. same dp group
349
        3. same dtype
350
        4. dependency: grad would NOT be used by other ops within group segment
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566

        gradients inside same group would be fuse into one coalesce tensor
        """

        block = default_main_program().global_block()
        ops = block.ops

        # group individual grad vars
        # TODO consider fuse gradient for sharding reduce
        # TODO let user to set fuse_grad_size
        # emb = 50000 * h, ffn = 8 * h * h, mha = 4 * h * h
        h = 2048
        ffn_numel = 2 * (4 * h) * h
        mha_numel = 3 * h * h + h * h
        max_fuse_numel = ffn_numel + mha_numel
        grad_groups = []
        cur_group = GradientsGroup(ops, max_fuse_numel)
        grouped_grad_names = set()

        def collect_group(cur_group, grad_var, ring_id, i):
            if len(cur_group.gradients) == 0:
                cur_group = None
            elif len(cur_group.gradients) == 1:
                grouped_grad_names.remove(cur_group.gradients[0].name)
            else:
                cur_group.finalize()
                grad_groups.append(cur_group)

            new_group = GradientsGroup(ops, max_fuse_numel)
            if grad_var:
                new_group.add(grad_var, ring_id, i)
                grouped_grad_names.add(grad_var.name)
            return new_group

        def op_depend_on_group(op, group):
            vars_ = set(op.input_arg_names + op.output_arg_names)
            grad_names = set([grad.name for grad in group.gradients])
            return len(vars_.intersection(grad_names)) > 0

        for i, op in enumerate(ops):
            if is_data_parallel_reduce_op(op):
                ring_id = op.attr("ring_id")
                grad_name = op.output_arg_names[0]
                grad_var = block.var(grad_name)
                grad_numel = numel(grad_var)

                if cur_group.acceptable(grad_var, ring_id):
                    assert grad_name not in grouped_grad_names
                    grouped_grad_names.add(grad_name)
                    cur_group.add(grad_var, ring_id, i)
                else:
                    cur_group = collect_group(cur_group, grad_var, ring_id, i)
            else:
                if op_depend_on_group(op, cur_group):
                    cur_group = collect_group(cur_group, None, None, None)

        # collect last group
        collect_group(cur_group, None, None, None)

        return grad_groups

    def _update_program(self, grad_groups):

        block = default_main_program().global_block()

        remove_op_types = ['scale', 'c_allreduce_sum', 'c_wait_compute']

        for i, group in enumerate(grad_groups[::-1]):

            # create coalecse tensor
            group.coalesce_var = block.create_var(name=unique_name.generate(
                'coalecse_grad_{}'.format(i)),
                                                  dtype=group.dtype,
                                                  persistable=False,
                                                  stop_gradient=True)

            # update allreduce & scale op
            if group.scale_op_idx != -1:
                scale_op = block.ops[group.scale_op_idx]
                assert scale_op.type == 'scale', "should found scale op but found {}".format(
                    str(scale_op))
                scale_op._rename_input(scale_op.input_arg_names[0],
                                       group.coalesce_var.name)
                scale_op._rename_output(scale_op.output_arg_names[0],
                                        group.coalesce_var.name)

            allreduce_op = block.ops[group.allreduce_op_idx]
            assert allreduce_op.type == 'c_allreduce_sum', "should found c_allreduce_sum op but found {}".format(
                str(allreduce_op))
            allreduce_op._rename_input(allreduce_op.input_arg_names[0],
                                       group.coalesce_var.name)
            allreduce_op._rename_output(allreduce_op.output_arg_names[0],
                                        group.coalesce_var.name)

            # remvoe un-used op
            remove_op_indices = group.remove_wait_op_indices + group.remove_allreduce_op_indices + group.remove_scale_op_indices
            for idx in sorted(remove_op_indices, reverse=True):
                assert block.ops[
                    idx].type in remove_op_types, "Unexception: try to remove op {}".format(
                        str(op))
                block._remove_op(idx)

            # insert coalecse op
            concated_shapes = []
            concated_ranks = []
            for grad_ in group.gradients:
                shape = grad_.shape
                concated_shapes.extend(shape)
                concated_ranks.append(len(shape))

            grad_names = [grad.name for grad in group.gradients]
            block._insert_op_without_sync(group.coalesce_op_idx,
                                          type="coalesce_tensor",
                                          inputs={"Input": grad_names},
                                          outputs={
                                              "Output": grad_names,
                                              "FusedOutput": group.coalesce_var
                                          },
                                          attrs={
                                              "copy_data": False,
                                              "use_align": True,
                                              "dtype": group.dtype,
                                              "concated_shapes":
                                              concated_shapes,
                                              "concated_ranks": concated_ranks,
                                              OP_ROLE_KEY: OpRole.Backward
                                          })

        block._sync_with_cpp()
        # TODO update dist attr

    def summary(self, grad_groups=[]):
        # TODO: add logger module
        import logging
        self._logger = logging.getLogger()
        self._logger.propagate = False
        if not self._logger.handlers:
            self._logger.setLevel(logging.INFO)
            log_handler = logging.StreamHandler()
            log_format = logging.Formatter(
                '[%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s'
            )
            log_handler.setFormatter(log_format)
            self._logger.addHandler(log_handler)

        if len(grad_groups) > 0:
            self._logger.info(
                "origin {} allreduce ops are fused into {} coalecse allreduce ops."
                .format(len(self._grad_name_to_group_map.keys()),
                        len(grad_groups)))
            self._logger.info("gradient fusing group are following: ")
            fused_grads = set()
            for i, group in enumerate(grad_groups):
                self._logger.info(
                    "coalecse gradient [{}] is composed by: {}".format(
                        i, [grad.name for grad in group.gradients]))
                fused_grads.update([grad.name for grad in group.gradients])
            individual_grads = set(
                self._grad_name_to_group_map.keys()) - set(fused_grads)
            self._logger.info(
                "the following [{}] gradients are not fused: ".format(
                    len(individual_grads)))
            self._logger.info("individual gradient {}".format(individual_grads))


class GradientsGroup(object):

    def __init__(self, ops, max_group_size):
        self.max_group_size = max_group_size
        self.ops = ops

        self.gradients = []
        self.numel = 0
        self.dtype = None
        self.ring_id = None
        self.coalesce_var = None
        self.coalesce_op_idx = -1
        self.allreduce_op_idx = -1
        self.scale_op_idx = -1
        self.remove_wait_op_indices = []
        self.remove_allreduce_op_indices = []
        self.remove_scale_op_indices = []

    def acceptable(self, grad_var, ring_id):
        if len(self.gradients) == 0:
            return True
        if ring_id != self.ring_id:
            return False
        if numel(grad_var) + self.numel > self.max_group_size:
            return False
        if grad_var.dtype != self.dtype:
            return False

        return True

    def add(self, grad_var, ring_id, i):
        self.gradients.append(grad_var)
        self.ring_id = ring_id
        self.dtype = grad_var.dtype
        self.numel += numel(grad_var)

        # remove auxiliary ops in non-fuse dp allreduce
        self.remove_allreduce_op_indices.append(i)

        # NOTE this pass rely on the original synchronization add in previous passes
        # (same stream or calc_wait_comm & comm_wait_calc)
        # to guarantee the correctness of comm_calc execution order.
        # so the calc_wait_comm should be keep.
        grad_op_idx = i - 1
        if i > 0 and self.ops[i - 1].type == 'c_wait_compute':
            self.remove_wait_op_indices.append(i - 1)
            grad_op_idx -= 1
        if i + 1 < len(self.ops) and is_data_parallel_scale_op(self.ops[i - 1]):
            self.remove_scale_op_indices.append(i + 1)

        if len(self.gradients) == 1:
567 568 569 570 571
            # TODO Remove this is a temporary hack for Tensor Parallel. the logic
            # for find grad_op should be more general.
            if self.ops[grad_op_idx].type == "c_allreduce_sum":
                grad_op_idx -= 1

572 573 574 575 576 577 578 579 580 581 582
            grad_op = self.ops[grad_op_idx]
            assert grad_var.name in grad_op.output_arg_names, "grad [{}] should be output of {}".format(
                grad_var.name, str(grad_op))
            self.coalesce_op_idx = grad_op_idx

    def finalize(self):
        self.allreduce_op_idx = self.remove_allreduce_op_indices.pop()
        if len(self.remove_wait_op_indices) > 1:
            self.remove_wait_op_indices.pop()
        if len(self.remove_scale_op_indices) > 1:
            self.scale_op_idx = self.remove_scale_op_indices.pop()