mkldnn_reuse.h 59.5 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <memory>
17
#include <sstream>
J
Jacek Czaja 已提交
18
#include <string>
19
#include <utility>
J
Jacek Czaja 已提交
20
#include <vector>
21
#include "boost/optional.hpp"
X
xiaoli.liu@intel.com 已提交
22
#include "paddle/fluid/framework/data_layout_transform.h"
J
Jacek Czaja 已提交
23
#include "paddle/fluid/framework/operator.h"
24
#include "paddle/fluid/operators/pool_op.h"
J
Jacek Czaja 已提交
25 26 27 28 29 30
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace platform {

31 32
using framework::DataLayout;
using framework::Tensor;
J
Jacek Czaja 已提交
33
using user_function = std::function<std::shared_ptr<float>(const float*)>;
34
using memory = mkldnn::memory;
J
Jacek Czaja 已提交
35

36 37
template <typename T, typename TForward,
          typename TBackward = mkldnn_dummy_primitive>
38 39 40 41 42 43 44 45 46 47
class MKLDNNHandlerT {
 public:
  MKLDNNHandlerT(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                 platform::Place cpu_place, const std::string& base_key)
      : dev_ctx_(dev_ctx),
        engine_(engine),
        place_(cpu_place),
        key_common_(base_key),
        fwd_pd_(nullptr),
        bwd_pd_(nullptr) {
48
    platform::MKLDNNDeviceContext::tls().log_lib_version();
49 50
    if (platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id() !=
        platform::MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_Default) {
51 52 53 54
      key_ = key_common_;
    } else {
      key_ = key_common_ + "-t:" + ThreadIDasStr();
    }
55
    key_ += dev_ctx.GetKeySuffix();
56 57
  }

A
Adam 已提交
58
  std::shared_ptr<TForward> AcquireForwardPrimitive() {
59
    const std::string key_p = key_ + "@fwd_p";
60 61 62
    auto forward_p =
        std::static_pointer_cast<TForward>(dev_ctx_.GetBlob(key_p));
    if (forward_p == nullptr) {
A
Adam 已提交
63
      forward_p = std::make_shared<TForward>(*fwd_pd_);
64 65 66 67 68
      dev_ctx_.SetBlob(key_p, forward_p);
    }
    return forward_p;
  }

A
Adam 已提交
69
  std::shared_ptr<TBackward> AcquireBackwardPrimitive() {
70
    const std::string key_p = key_ + "@bwd_p";
71 72 73
    auto backward_p =
        std::static_pointer_cast<TBackward>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
A
Adam 已提交
74
      backward_p = std::make_shared<TBackward>(*bwd_pd_);
75 76 77 78 79
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

80 81 82
  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
83 84
    return this->AcquireMemoryFromPrimitive(
        fwd_pd_->src_desc(), to_void_cast<T>(input_data), "@src_mem_p");
85 86
  }

87
  template <typename T_out = T>
88
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output) {
89 90
    T_out* ptr =
        output->mutable_data<T_out>(place_, fwd_pd_->dst_desc().get_size());
A
Adam 已提交
91
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), ptr,
92 93 94
                                            "@dst_mem_p");
  }

95
  template <typename T_out = T>
96 97
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const framework::Tensor* output) {
98 99 100 101
    const T_out* output_data = output->data<T_out>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->dst_desc(),
                                            to_void_cast<T_out>(output_data),
                                            "@bwd-dst_mem_p");
102 103 104 105 106
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
      const framework::Tensor* diffdst) {
    const T* ptr = diffdst->data<T>();
A
Adam 已提交
107 108
    return this->AcquireMemoryFromPrimitive(
        bwd_pd_->diff_dst_desc(), to_void_cast<T>(ptr), "@diff_dst_mem_p");
109 110 111 112
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
      framework::Tensor* diffsrc) {
A
Adam 已提交
113 114 115 116
    T* ptr =
        diffsrc->mutable_data<T>(place_, bwd_pd_->diff_src_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_desc(), ptr,
                                            "@diff_src_mem_p");
117 118
  }

119
 protected:
120
  bool isCached() {
121
    const std::string key_pd = key_common_ + "@fwd_pd";
122 123
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
124

125
    const std::string key_p = key_ + "@fwd_p";
126
    return (dev_ctx_.GetBlob(key_p) != nullptr);
127 128
  }

129 130 131 132 133 134
  // If your primitive descriptor requires attributes, pass them as a
  // first argument and paramters to descriptor constructor in the following
  // arguments. Otherwise, all arguments will be forwarded to descriptor
  // constructor, including the first one.
  template <typename Arg, typename... Args>
  void AcquireForwardPrimitiveDescriptor(Arg&& first_arg, Args&&... args) {
135 136 137
    // Forward PD has to be passed to Grad op that
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
138
    const std::string key_pd = key_common_ + "@fwd_pd";
139 140 141 142 143 144 145 146 147
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (fwd_pd_ == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
      fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
          dev_ctx_.GetBlob(key_pd));
      if (fwd_pd_ == nullptr) {
148 149
        CreateForwardPrimitiveDescriptor(first_arg,
                                         std::forward<Args>(args)...);
150 151 152 153 154
        dev_ctx_.SetBlob(key_pd, fwd_pd_);
      }
    }
  }

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
  // Using sfinae to specialise variadic function. Workaround for not having
  // if constexpr in C++ 11.
  template <class First, class... Args>
  typename std::enable_if<std::is_same<typename std::decay<First>::type,
                                       dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<Args>(args)...);
    fwd_pd_ = std::make_shared<typename TForward::primitive_desc>(
        fwd_desc, first, engine_);
  }

  template <class First, class... Args>
  typename std::enable_if<!std::is_same<typename std::decay<First>::type,
                                        dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<First>(first),
                                            std::forward<Args>(args)...);
    fwd_pd_ =
        std::make_shared<typename TForward::primitive_desc>(fwd_desc, engine_);
  }

176 177
  template <typename... Args>
  void AcquireBackwardPrimitiveDescriptor(Args&&... args) {
178
    const std::string key_fwd_pd = key_common_ + "@fwd_pd";
179 180
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_fwd_pd));
G
GaoWei8 已提交
181 182 183
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_, platform::errors::Unavailable(
                     "Get MKLDNN Forward primitive %s failed.", key_fwd_pd));
184
    const std::string key_pd = key_ + "@bwd_pd";
185 186 187 188 189 190 191 192 193 194
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (bwd_pd_ == nullptr) {
      auto bwd_desc = typename TBackward::desc(std::forward<Args>(args)...);
      bwd_pd_ = std::make_shared<typename TBackward::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_pd_);
    }
  }

195 196 197 198 199 200
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      const std::string& suffix) {
    return std::static_pointer_cast<mkldnn::memory>(
        dev_ctx_.GetBlob(key_ + suffix));
  }

201
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
A
Adam 已提交
202
      mkldnn::memory::desc md, void* ptr, const std::string& suffix) {
203
    const auto local_key = key_ + suffix;
204 205 206
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
207
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
208 209 210 211 212 213 214
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

215 216 217 218 219 220 221 222 223 224 225 226
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::desc md, const std::string& suffix) {
    const auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      mem_p = std::make_shared<mkldnn::memory>(md, engine_);
      dev_ctx_.SetBlob(local_key, mem_p);
    }
    return mem_p;
  }

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
  void AcquireReorder(const std::shared_ptr<mkldnn::memory>& user_memory_p,
                      const std::shared_ptr<mkldnn::memory>& target_memory_p,
                      const std::string& suffix) {
    const auto key_reorder_p = key_ + suffix + "reorder_p";

    auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
        dev_ctx_.GetBlob(key_reorder_p));

    if (reorder_p == nullptr) {
      reorder_p =
          std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);
      dev_ctx_.SetBlob(key_reorder_p, reorder_p);
    }

    mkldnn::stream astream(engine_);
    reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                 {MKLDNN_ARG_TO, *target_memory_p}});
    astream.wait();
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryWithReorder(
      const mkldnn::memory::desc& user_md,
      const mkldnn::memory::desc& target_md, void* ptr,
      const std::string& suffix, bool is_persistent = false) {
    const auto target_key = key_ + suffix + "_target";
    const auto key_reorder_p = key_ + suffix + "reorder_p";
    const auto user_key = key_ + suffix + "_user";

    auto target_memory_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(target_key));

    if (target_memory_p == nullptr) {
      auto user_memory_p =
          std::make_shared<dnnl::memory>(user_md, engine_, ptr);
      if (user_md != target_md) {
        target_memory_p = std::make_shared<mkldnn::memory>(target_md, engine_);
        auto reorder_p =
            std::make_shared<dnnl::reorder>(*user_memory_p, *target_memory_p);
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);

        mkldnn::stream astream(engine_);
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
      } else {
        target_memory_p = user_memory_p;
      }
      dev_ctx_.SetBlob(user_key, user_memory_p);
      dev_ctx_.SetBlob(target_key, target_memory_p);
    } else if (!is_persistent) {
      mkldnn::stream astream(engine_);

      auto user_memory_p =
          std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(user_key));
      user_memory_p->set_data_handle(ptr);

      auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
      }
    }
    return target_memory_p;
  }

294 295 296 297 298 299
  std::shared_ptr<mkldnn::memory> AcquireMemory(const std::string& suffix) {
    const auto local_key = key_ + suffix;
    return std::static_pointer_cast<mkldnn::memory>(
        dev_ctx_.GetBlob(local_key));
  }

300 301 302 303 304 305 306 307 308 309
  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
  platform::Place place_;
  std::string key_;
  std::string key_common_;
  std::shared_ptr<typename TForward::primitive_desc> fwd_pd_;
  std::shared_ptr<typename TBackward::primitive_desc> bwd_pd_;
};

// TODO(grygielski) this class will be deleted later.
J
Jacek Czaja 已提交
310 311 312 313
class MKLDNNHandler {
 public:
  MKLDNNHandler(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                const std::string& base_key)
314
      : dev_ctx_(dev_ctx), engine_(engine), key_common_(base_key) {
315
    platform::MKLDNNDeviceContext::tls().log_lib_version();
316 317
    if (platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id() !=
        platform::MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_Default) {
318
      key_ = key_common_;
319
    } else {
A
Adam 已提交
320
      key_ = key_common_ + "-t:" + ThreadIDasStr();
321
    }
322
    key_ += dev_ctx.GetKeySuffix();
323
  }
J
Jacek Czaja 已提交
324 325 326 327 328 329 330 331 332 333 334

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_src_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_dst_mem_p");
  }

A
Adam 已提交
335
  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
J
Jacek Czaja 已提交
336
      const mkldnn::memory::desc& md, void* ptr) {
A
Adam 已提交
337
    return this->AcquireMemory(md, ptr, "@user_diff_src_mem_p");
J
Jacek Czaja 已提交
338 339
  }

A
Adam 已提交
340
  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
J
Jacek Czaja 已提交
341
      const mkldnn::memory::desc& md, void* ptr) {
A
Adam 已提交
342
    return this->AcquireMemory(md, ptr, "@user_diff_dst_mem_p");
J
Jacek Czaja 已提交
343 344 345
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
A
Adam 已提交
346
      mkldnn::memory::desc md, void* ptr, const std::string& suffix) {
J
Jacek Czaja 已提交
347 348 349 350
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
351
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
J
Jacek Czaja 已提交
352 353 354 355 356 357 358
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

359 360 361 362 363 364 365 366 367 368 369 370
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::desc md, const std::string& suffix) {
    const auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      mem_p = std::make_shared<mkldnn::memory>(md, engine_);
      dev_ctx_.SetBlob(local_key, mem_p);
    }
    return mem_p;
  }

J
Jacek Czaja 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
  // This incarnation of AcquireMemory can call user function eg. custom reorder
  // or preprocessing routine if needed
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const mkldnn::memory::desc& md, void* ptr, const std::string& suffix,
      user_function custom_func = {}) {
    /*Generate key*/
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      // Call custom reorder/preprocessing func if available
      if (custom_func) {
        auto reordered_data = custom_func(reinterpret_cast<const float*>(ptr));
        dev_ctx_.SetBlob(local_key + "-custom_reorder", reordered_data);
        ptr = reinterpret_cast<void*>(reordered_data.get());
      }

A
Adam 已提交
388
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
J
Jacek Czaja 已提交
389 390 391 392 393 394 395
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

396
  std::shared_ptr<mkldnn::memory> AcquireMemory(
A
Adam 已提交
397
      const std::vector<int64_t>& dims, const mkldnn::memory::data_type dtype,
398
      const MKLDNNMemoryFormat& fmt, void* ptr, const std::string& suffix) {
399 400 401 402 403 404 405
    /*Generate key*/
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      auto md = mkldnn::memory::desc(dims, dtype, fmt);

A
Adam 已提交
406
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
407 408 409 410 411 412 413
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

J
Jacek Czaja 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const std::shared_ptr<mkldnn::memory>& user_memory_p,
      const std::shared_ptr<mkldnn::memory>& target_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto stored_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
        dev_ctx_.GetBlob(key_reorder_p));

    if (stored_reorder_p) {
      pipeline.push_back(*stored_reorder_p);
    } else {
      auto reorder_p =
          std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);
      dev_ctx_.SetBlob(key_reorder_p, reorder_p);
A
Adam 已提交
431 432 433 434
      mkldnn::stream astream(engine_);
      reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                   {MKLDNN_ARG_TO, *target_memory_p}});
      astream.wait();
J
Jacek Czaja 已提交
435 436 437 438 439 440
    }

    return target_memory_p;
  }

  std::shared_ptr<mkldnn::memory> AcquireMemory(
A
Adam 已提交
441 442
      mkldnn::memory::desc& md,       // NOLINT
      mkldnn::memory::desc& user_md,  // NOLINT
J
Jacek Czaja 已提交
443 444 445
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
446 447
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
J
Jacek Czaja 已提交
448 449 450 451 452 453
    // create reorder primitive if the input format is not the preferred one
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto target_memory_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
A
Adam 已提交
454 455 456

    mkldnn::stream astream(engine_);

J
Jacek Czaja 已提交
457 458
    if (target_memory_p == nullptr) {
      target_memory_p = user_memory_p;
A
Adam 已提交
459 460 461
      if (md != user_md) {
        target_memory_p = std::make_shared<mkldnn::memory>(md, engine_);
        std::shared_ptr<mkldnn::reorder::primitive_desc> reorder_pd;
462 463 464 465 466
        if (is_INT8) {
          mkldnn::primitive_attr
              attri;  // attribute for int8 weights and bias data reorder.
          attri.set_output_scales(mask, scale_data);

A
Adam 已提交
467 468 469
          reorder_pd = std::shared_ptr<mkldnn::reorder::primitive_desc>(
              new mkldnn::reorder::primitive_desc(*user_memory_p,
                                                  *target_memory_p, attri));
470
        } else {
A
Adam 已提交
471 472 473
          reorder_pd = std::shared_ptr<mkldnn::reorder::primitive_desc>(
              new mkldnn::reorder::primitive_desc(*user_memory_p,
                                                  *target_memory_p));
474
        }
A
Adam 已提交
475 476
        auto reorder_p =
            std::shared_ptr<mkldnn::reorder>(new mkldnn::reorder(*reorder_pd));
J
Jacek Czaja 已提交
477
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);
A
Adam 已提交
478 479 480 481

        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
J
Jacek Czaja 已提交
482 483 484 485 486 487 488
      }
      dev_ctx_.SetBlob(local_key, target_memory_p);
    } else if (!is_persistent) {
      // Make reorder if needed
      auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
A
Adam 已提交
489 490 491
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
J
Jacek Czaja 已提交
492 493 494 495 496 497 498 499 500
      }
    }
    return target_memory_p;
  }

 protected:
  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
  std::string key_;
501
  std::string key_common_;
J
Jacek Czaja 已提交
502 503
};

504 505 506
template <typename T>
class BinaryMKLDNNHandler : public platform::MKLDNNHandlerT<T, dnnl::binary> {
 public:
507 508
  BinaryMKLDNNHandler(const dnnl::algorithm algo, const int axis,
                      const MKLDNNDeviceContext& dev_ctx,
509 510
                      const mkldnn::engine engine, platform::Place cpu_place,
                      const Tensor* x, const Tensor* y, Tensor* z,
511
                      float scale_x, float scale_y, float scale_z,
512
                      const std::string& uniq_name)
513
      : platform::MKLDNNHandlerT<T, dnnl::binary>(
514
            dev_ctx, engine, cpu_place,
515 516 517 518
            platform::CreateKey(
                framework::vectorize(x->dims()),
                uniq_name + (algo == dnnl::algorithm::binary_mul ? "M" : ""))) {
    // bradcasting combined with in-place may require
519 520
    auto rankdiff = x->dims().size() - y->dims().size();
    if (rankdiff > 0) {
521 522 523
      auto suffix = std::to_string(rankdiff);
      this->key_ += suffix;
      this->key_common_ += suffix;
524 525
    }

526 527 528
    if (!this->isCached()) {
      PADDLE_ENFORCE_EQ(
          x->layout(), DataLayout::kMKLDNN,
G
GaoWei8 已提交
529
          platform::errors::InvalidArgument("Wrong layout set for X tensor."));
530 531
      PADDLE_ENFORCE_NE(
          x->format(), MKLDNNMemoryFormat::undef,
G
GaoWei8 已提交
532
          platform::errors::InvalidArgument("Wrong format set for X tensor."));
533 534 535

      PADDLE_ENFORCE_EQ(
          y->layout(), DataLayout::kMKLDNN,
G
GaoWei8 已提交
536
          platform::errors::InvalidArgument("Wrong layout set for Y tensor."));
537 538
      PADDLE_ENFORCE_NE(
          y->format(), MKLDNNMemoryFormat::undef,
G
GaoWei8 已提交
539
          platform::errors::InvalidArgument("Wrong format set for Y tensor."));
540 541 542 543 544 545 546

      const auto src_x_tz = framework::vectorize(x->dims());
      const auto src_y_tz = framework::vectorize(y->dims());
      const auto dst_tz = framework::vectorize(z->dims());

      const auto src0_md = dnnl::memory::desc(
          src_x_tz, platform::MKLDNNGetDataType<T>(), x->format());
547
      auto src1_md = dnnl::memory::desc(
548
          src_y_tz, platform::MKLDNNGetDataType<T>(), y->format());
549
      if (rankdiff > 0) {
550 551 552
        std::vector<int64_t> dims1_ex(rankdiff, 1);
        dims1_ex.insert(next(dims1_ex.begin(), (axis == -1 ? rankdiff : axis)),
                        src_y_tz.begin(), src_y_tz.end());
553 554
        src1_md = src1_md.reshape(dims1_ex);
      }
555 556 557
      const auto dst_md = memory::desc(dst_tz, platform::MKLDNNGetDataType<T>(),
                                       MKLDNNMemoryFormat::any);

558 559 560
      auto attributes = CreateAttributes(algo, scale_x, scale_y, scale_z);
      this->AcquireForwardPrimitiveDescriptor(attributes, algo, src0_md,
                                              src1_md, dst_md);
561
    }
562 563 564 565 566 567
  }

  std::shared_ptr<mkldnn::memory> AcquireSecondSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(
568
        this->fwd_pd_->src1_desc(), to_void_cast<T>(input_data), "@src1_mem_p");
569
  }
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601

 private:
  static inline dnnl::primitive_attr CreateAttributes(dnnl::algorithm op,
                                                      float scale_x,
                                                      float scale_y,
                                                      float scale_z) {
    // Scales set in attributes for inputs contibute to the output equation
    // in the following way (assuming no broadcasting takes place):
    // output_i = scale_0 * x_i <+ or *> scale_1 * y_i;
    // Hence we have to create scales that will:
    // 1. Dequantize both values, by multiplying with (1.0 / scale_x_or_y)
    // 2. Quantize their result to output scale range, by multiplying with
    // (scale_z)
    // If we combine these two, we end up with following equation
    // output = scale_out * (1/scale_x * x <* or +> 1/scale_y * y)
    // Hence, to mimic such behaviour using provided interface,
    // For add operation the equation is equal to:
    // output = (scale_out / scale_x) * x + (scale_out / scale_y) * y
    //                <scale_0>                  <scale_1>
    // For mul operation on the other hand
    // output = (scale_out / scale_x) * x * (1.0 / scale_y) * y
    //                <scale_0>                 <scale_1>
    float scale_0 = scale_z / scale_x;
    float scale_1 =
        op == dnnl::algorithm::binary_add ? scale_z / scale_y : 1.0 / scale_y;
    dnnl::primitive_attr attributes;
    attributes.set_scales(/* input_x_id = */ DNNL_ARG_SRC_0, /* mask = */ 0,
                          {scale_0});
    attributes.set_scales(/* input_y_id = */ DNNL_ARG_SRC_1, /* mask = */ 0,
                          {scale_1});
    return attributes;
  }
602 603
};

604
template <typename T>
605 606 607
class ActivationMKLDNNHandler
    : public MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                            mkldnn::eltwise_backward> {
608
 public:
A
Adam 已提交
609
  ActivationMKLDNNHandler(const std::vector<int64_t>& dims,
610
                          mkldnn::algorithm algorithm, float alpha, float beta,
611
                          const MKLDNNMemoryFormat fmt,
612 613 614 615
                          const platform::MKLDNNDeviceContext& dev_ctx,
                          platform::Place cpu_place,
                          const std::string& unique_name)

616 617 618
      : platform::MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                                 mkldnn::eltwise_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
619
            platform::CreateKey(dims, "a", algorithm, unique_name)) {
620 621
    auto md = mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), fmt);

622 623
    this->AcquireForwardPrimitiveDescriptor(mkldnn::prop_kind::forward_training,
                                            algorithm, md, alpha, beta);
624
  }
625

A
Adam 已提交
626
  ActivationMKLDNNHandler(const std::vector<int64_t>& dims,
627 628 629 630 631 632 633
                          mkldnn::algorithm algorithm, float alpha, float beta,
                          const MKLDNNMemoryFormat fmt,
                          const MKLDNNMemoryFormat diff_fmt,
                          const platform::MKLDNNDeviceContext& dev_ctx,
                          platform::Place cpu_place,
                          const std::string& unique_name)

634 635 636
      : platform::MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                                 mkldnn::eltwise_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
637
            platform::CreateKey(dims, "a", algorithm, unique_name)) {
638 639 640 641 642 643 644
    auto diff_dst_md = platform::MKLDNNMemDesc(
        dims, platform::MKLDNNGetDataType<T>(), diff_fmt);
    auto src_md =
        platform::MKLDNNMemDesc(dims, platform::MKLDNNGetDataType<T>(), fmt);

    this->AcquireBackwardPrimitiveDescriptor(algorithm, diff_dst_md, src_md,
                                             alpha, beta);
645
  }
646

647 648 649
  std::shared_ptr<mkldnn::memory> AcquireBackwardSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
650
    return this->AcquireMemoryFromPrimitive(this->bwd_pd_->src_desc(),
651 652
                                            to_void_cast<T>(input_data),
                                            "@bwd-src_mem_p");
653 654 655
  }
};

J
Jacek Czaja 已提交
656 657 658
template <typename T>
class LRNMKLDNNHandler
    : public MKLDNNHandlerT<T, mkldnn::lrn_forward, mkldnn::lrn_backward> {
659
 public:
660
  LRNMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
J
Jacek Czaja 已提交
661
                   const platform::MKLDNNDeviceContext& dev_ctx,
662 663 664
                   const mkldnn::engine mkldnn_engine,
                   platform::Place cpu_place, const Tensor* input,
                   const std::string& unique_name)
665

J
Jacek Czaja 已提交
666
      : platform::MKLDNNHandlerT<T, mkldnn::lrn_forward, mkldnn::lrn_backward>(
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
            dev_ctx, mkldnn_engine, cpu_place,
            platform::CreateKey(framework::vectorize(input->dims()),
                                unique_name)) {
    if (!this->isCached()) {
      const int n = ctx.Attr<int>("n");
      // MKL-DNN implements LRN in a caffe way:
      // http://caffe.berkeleyvision.org/tutorial/layers/lrn.html
      // Where sum of squares is divided by size of normalization window
      // this is not the case for PaddlePaddle LRN.
      // Hence we need to compensate for this diffrence by
      // multipliing alpha by size of window(n)
      const float alpha = ctx.Attr<float>("alpha") * static_cast<float>(n);
      const float beta = ctx.Attr<float>("beta");
      const float k = ctx.Attr<float>("k");
      bool is_test = ctx.Attr<bool>("is_test");

      auto dims = paddle::framework::vectorize(input->dims());

      auto src_md = mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(),
                                         input->format());

      this->AcquireForwardPrimitiveDescriptor(
          is_test ? mkldnn::prop_kind::forward_inference
                  : mkldnn::prop_kind::forward_training,
          mkldnn::algorithm::lrn_across_channels, src_md, n, alpha, beta, k);
    }
693 694
  }

A
Adam 已提交
695 696
  LRNMKLDNNHandler(const std::vector<int64_t>& dims, const int n,
                   const float alpha, const float beta, const float k,
J
Jacek Czaja 已提交
697 698 699 700
                   const MKLDNNMemoryFormat fmt,
                   const MKLDNNMemoryFormat diff_fmt,
                   const platform::MKLDNNDeviceContext& dev_ctx,
                   platform::Place cpu_place, const std::string& unique_name)
701

J
Jacek Czaja 已提交
702 703
      : platform::MKLDNNHandlerT<T, mkldnn::lrn_forward, mkldnn::lrn_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
704
            platform::CreateKey(dims, unique_name)) {
J
Jacek Czaja 已提交
705 706 707 708
    auto src_md =
        mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), fmt);
    auto diff_md =
        mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), diff_fmt);
709

J
Jacek Czaja 已提交
710
    this->AcquireBackwardPrimitiveDescriptor(
A
Adam 已提交
711 712
        mkldnn::algorithm::lrn_across_channels, src_md, diff_md, n, alpha, beta,
        k);
713 714
  }

J
Jacek Czaja 已提交
715 716 717
  std::shared_ptr<mkldnn::memory> AcquireWorkspaceMemory(
      framework::Tensor* workspace) {
    T* ptr = workspace->mutable_data<T>(
A
Adam 已提交
718 719 720
        this->place_, this->fwd_pd_->workspace_desc().get_size());
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->workspace_desc(),
                                            ptr, "@wrk_mem_p");
J
Jacek Czaja 已提交
721 722 723 724 725
  }

  std::shared_ptr<mkldnn::memory> AcquireBackwardWorkspaceMemory(
      const framework::Tensor* workspace) {
    const T* workspace_data = workspace->data<T>();
A
Adam 已提交
726 727 728
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->workspace_desc(),
                                            to_void_cast<T>(workspace_data),
                                            "@bwd-wrk_mem_p");
J
Jacek Czaja 已提交
729
  }
730 731
};

732 733 734
template <typename T>
class PoolingMKLDNNHandler : public MKLDNNHandlerT<T, mkldnn::pooling_forward,
                                                   mkldnn::pooling_backward> {
735
 public:
736 737 738 739 740
  PoolingMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
                       const MKLDNNDeviceContext& dev_ctx,
                       const mkldnn::engine mkldnn_engine,
                       platform::Place cpu_place, const Tensor* input,
                       Tensor* output, const std::string& unique_name)
741 742 743
      : platform::MKLDNNHandlerT<T, mkldnn::pooling_forward,
                                 mkldnn::pooling_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
744 745 746 747 748 749
            platform::CreateKey(framework::vectorize(input->dims()),
                                framework::ToMKLDNNDataType(input->type()),
                                unique_name)) {
    if (!this->isCached()) {
      PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                        platform::errors::InvalidArgument(
G
GaoWei8 已提交
750
                            "Wrong layout set for Input tensor."));
751 752
      PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
G
GaoWei8 已提交
753
                            "Wrong format set for Input tensor."));
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770

      const std::string pooling_type = ctx.Attr<std::string>("pooling_type");

      std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
      std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));

      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      const bool global_pooling = ctx.Attr<bool>("global_pooling");
      const std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");

      // Only 2D pooling is supported now
G
GaoWei8 已提交
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
      PADDLE_ENFORCE_EQ(
          ksize.size(), 2,
          platform::errors::InvalidArgument(
              "The ksize must be 2D, i.e. 2D pooling, but received %dD.",
              ksize.size()));
      PADDLE_ENFORCE_EQ(
          pooling_type == "max" || pooling_type == "avg", true,
          platform::errors::InvalidArgument(
              "The pooling_type must be 'max' or 'avg', but received %s.",
              pooling_type));
      PADDLE_ENFORCE_EQ(
          input->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Input dim must be with 4, i.e. NCHW, but received %d.",
              input->dims().size()));
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824

      const auto input_dims = input->dims();
      framework::DDim data_dims =
          framework::slice_ddim(input_dims, 2, input_dims.size());

      if (global_pooling) {
        operators::UpdateKsize(&ksize, data_dims);
      }

      operators::UpdatePadding(&paddings, global_pooling, 0, padding_algorithm,
                               data_dims, strides, ksize);

      const auto src_tz = paddle::framework::vectorize(input->dims());
      const auto dst_tz = paddle::framework::vectorize(output->dims());

      const auto is_test = ctx.Attr<bool>("is_test");

      const auto dt = framework::ToMKLDNNDataType(input->type());
      const auto fmt = input->format();

      const auto exclude_padding = ctx.Attr<bool>("exclusive");

      const auto src_md = mkldnn::memory::desc(src_tz, dt, fmt);
      /* create memory descriptor for pooling without specified format
       * ('any') which lets a primitive (pooling in this case) choose
       * the memory format preferred for best performance
       */

      const auto dst_md =
          platform::MKLDNNMemDesc(dst_tz, dt, MKLDNNMemoryFormat::any);

      auto mkldnn_paddings = ToMkldnnPadding(paddings);

      const bool ceil_mode = ctx.Attr<bool>("ceil_mode");

      if (ceil_mode) {
        CorrectOutputSize(src_tz, dst_tz, ksize, paddings, strides,
                          mkldnn_paddings[1]);
      }
825 826 827

      ComputeAdaptivePoolParameters(ctx, src_tz, ksize, strides);

828 829 830 831 832 833 834 835 836 837
      this->AcquireForwardPrimitiveDescriptor(
          is_test ? mkldnn::prop_kind::forward_inference
                  : mkldnn::prop_kind::forward_training,
          pooling_type == "max"
              ? mkldnn::algorithm::pooling_max
              : (exclude_padding
                     ? mkldnn::algorithm::pooling_avg_exclude_padding
                     : mkldnn::algorithm::pooling_avg_include_padding),
          src_md, dst_md, strides, ksize, mkldnn_paddings[0],
          mkldnn_paddings[1]);
838
    }
839 840 841
  }

  PoolingMKLDNNHandler(
A
Adam 已提交
842 843 844 845 846 847
      const std::vector<int64_t>& diff_dst_dims,
      const std::vector<int64_t>& diff_src_dims,
      const std::vector<int64_t>& ksize, const std::vector<int64_t>& strides,
      const std::vector<int64_t>& paddings, const std::string& pooling_type,
      bool ceil_mode, const MKLDNNMemoryFormat fmt,
      const MKLDNNMemoryFormat diff_dst_fmt, mkldnn::memory::data_type dt,
848
      const platform::MKLDNNDeviceContext& dev_ctx, platform::Place cpu_place,
849
      const std::string& unique_name, bool exclude_padding)
850 851 852
      : platform::MKLDNNHandlerT<T, mkldnn::pooling_forward,
                                 mkldnn::pooling_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
853
            platform::CreateKey(diff_src_dims, dt, unique_name)) {
854 855 856 857 858 859
    auto diff_dst_md = mkldnn::memory::desc(
        diff_dst_dims, platform::MKLDNNGetDataType<T>(), diff_dst_fmt);
    auto diff_src_md =
        mkldnn::memory::desc(diff_src_dims, platform::MKLDNNGetDataType<T>(),
                             MKLDNNMemoryFormat::any);

860 861
    auto mkldnn_paddings = ToMkldnnPadding(paddings);

862
    this->AcquireBackwardPrimitiveDescriptor(
863 864 865 866 867
        pooling_type == "max"
            ? mkldnn::algorithm::pooling_max
            : (exclude_padding
                   ? mkldnn::algorithm::pooling_avg_exclude_padding
                   : mkldnn::algorithm::pooling_avg_include_padding),
868
        diff_src_md, diff_dst_md, strides, ksize, mkldnn_paddings[0],
A
Adam 已提交
869
        mkldnn_paddings[1]);
870 871 872
  }

  std::shared_ptr<mkldnn::memory> AcquireWorkspaceMemory(void) {
A
Adam 已提交
873
    mkldnn::memory::desc workspace_md = this->fwd_pd_->workspace_desc();
874 875 876
    // Pooling PD has to be passed to Grad op that
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
877 878 879
    auto local_key = this->key_common_ + "@workspace";
    auto mem_p = std::static_pointer_cast<mkldnn::memory>(
        this->dev_ctx_.GetBlob(local_key));
880 881 882 883
    if (mem_p == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
884 885
      mem_p = std::static_pointer_cast<mkldnn::memory>(
          this->dev_ctx_.GetBlob(local_key));
886
      if (mem_p == nullptr) {
A
Adam 已提交
887
        mem_p = std::make_shared<mkldnn::memory>(workspace_md, this->engine_);
888
        this->dev_ctx_.SetBlob(local_key, mem_p);
889 890 891 892 893
      }
    }
    return mem_p;
  }

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
  static void ComputeAdaptivePoolParameters(
      const paddle::framework::ExecutionContext& ctx,
      const std::vector<int64_t>& src_tz, std::vector<int64_t>& ksize,
      std::vector<int64_t>& strides) {
    if (ctx.Attr<bool>("adaptive")) {
      // (jczaja): oneDNN is supporting only unchangable in size pool window
      PADDLE_ENFORCE_EQ(
          src_tz[src_tz.size() - 1] % ksize[1], 0,
          platform::errors::Unimplemented(
              "Input dim must be divisible by corressponding ksize dim."));
      PADDLE_ENFORCE_EQ(
          src_tz[src_tz.size() - 2] % ksize[0], 0,
          platform::errors::Unimplemented(
              "Input dim must be divisible by corressponding ksize dim."));
      ksize[0] = src_tz[src_tz.size() - 2] / ksize[0];
      ksize[1] = src_tz[src_tz.size() - 1] / ksize[1];
      strides[0] = ksize[0];
      strides[1] = ksize[1];
    }
  }

915 916 917 918 919 920 921
 private:
  static inline int ComputeCeiledOutput(int input_size, int kernel_size,
                                        int padding, int stride) {
    return (input_size - kernel_size + 2 * padding) / stride + 1;
  }

  static inline void CorrectOutputSize(
A
Adam 已提交
922 923 924 925
      const std::vector<int64_t>& src_tz, const std::vector<int64_t>& dst_tz,
      const std::vector<int64_t>& kernel_size,
      const std::vector<int64_t>& paddings, const std::vector<int64_t>& strides,
      std::vector<int64_t>& right_bot_padding) {  // NOLINT
926 927 928 929
    for (size_t i = 0; i < right_bot_padding.size(); i++) {
      int desired_size = ComputeCeiledOutput(src_tz[i + 2], kernel_size[i],
                                             paddings[i], strides[i]);
      if (desired_size != dst_tz[i + 2]) {
J
Jacek Czaja 已提交
930
        right_bot_padding[i] += strides[i] - 1;
931 932 933 934 935
      }
    }
  }
};

936
template <typename T>
937 938
class TransposeMKLDNNHandler : public MKLDNNHandler {
 public:
A
Adam 已提交
939 940
  TransposeMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
                         std::vector<int>& axis,      // NOLINT
941 942 943 944
                         const platform::MKLDNNDeviceContext& dev_ctx,
                         mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dims_(dims),
945 946 947 948
        axis_(axis),
        logical_axis_(dims.size(), 0) {}

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
949
      const MKLDNNMemoryFormat& fmt, void* ptr) {
950 951 952 953 954 955 956 957 958
    auto local_key = key_ + "@user_src_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      // Make memory descriptor using input format, unless it
      // cannot be trusted (nchw) then make up memory fmt manually
      for (size_t i = 0; i < logical_axis_.size(); ++i) {
        logical_axis_[i] = i;
      }
959

A
Adam 已提交
960
      auto src_md = fmt != MKLDNNMemoryFormat::nchw
961
                        ? platform::MKLDNNMemDesc(
962
                              dims_, platform::MKLDNNGetDataType<T>(), fmt)
963
                        : Axis2MemoryDesc(dims_, logical_axis_);
A
Adam 已提交
964
      mem_p = std::make_shared<mkldnn::memory>(src_md, engine_, ptr);
965 966 967 968 969 970
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }
971 972 973 974 975 976 977

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output,
                                                   platform::Place place) {
    auto local_key = key_ + "@user_dst_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
978
      auto dst_md = Axis2MemoryDesc(dims_, axis_);
979

A
Adam 已提交
980
      auto dst_data = output->mutable_data<T>(place, dst_md.get_size());
981

A
Adam 已提交
982
      mem_p = std::make_shared<mkldnn::memory>(dst_md, engine_, dst_data);
983 984
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
985
      auto dst_data = output->mutable_data<T>(place);
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
      mem_p->set_data_handle(dst_data);
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::reorder> AcquireTranspose(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    auto prim_key = key_ + "@transpose_p";
    auto transpose_p =
        std::static_pointer_cast<mkldnn::reorder>(dev_ctx_.GetBlob(prim_key));
    if (transpose_p == nullptr) {
      transpose_p =
          std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
      dev_ctx_.SetBlob(prim_key, transpose_p);
    }
    return transpose_p;
  }

 protected:
A
Adam 已提交
1006 1007 1008 1009
  mkldnn::memory::desc Axis2MemoryDesc(std::vector<int64_t>& nchw_tz,  // NOLINT
                                       std::vector<int>& axis          // NOLINT
                                       ) {
    size_t ndims = axis.size();
1010

A
Adam 已提交
1011
    std::vector<int64_t> strides(ndims);
1012
    unsigned int total_stride = 1;
A
Adam 已提交
1013 1014
    for (int i = ndims - 1; i >= 0; --i) {
      strides[axis[i]] = total_stride;
1015 1016
      total_stride *= nchw_tz[axis[i]];
    }
A
Adam 已提交
1017 1018 1019 1020
    mkldnn::memory::desc mem_d(nchw_tz, platform::MKLDNNGetDataType<T>(),
                               strides);

    return mem_d;
1021 1022 1023
  }

 private:
A
Adam 已提交
1024
  std::vector<int64_t> dims_;
1025
  std::vector<int> axis_;
1026
  std::vector<int> logical_axis_;
1027 1028
};

1029 1030
class ReorderMKLDNNHandler : public MKLDNNHandler {
 public:
A
Adam 已提交
1031
  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
                       framework::proto::VarType::Type vtype,
                       mkldnn::memory::data_type dtype,
                       const platform::MKLDNNDeviceContext& dev_ctx,
                       mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dims_(dims),
        vtype_(vtype),
        dtype_(dtype) {}

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
1042
      const MKLDNNMemoryFormat& fmt, void* ptr) {
1043
    return this->AcquireMemory(dims_, dtype_, fmt, ptr, "@user_src_mem_p");
1044 1045 1046
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
1047
      framework::Tensor* output, const MKLDNNMemoryFormat& fmt,
1048 1049 1050 1051 1052 1053 1054 1055 1056
      platform::Place place) {
    auto local_key = key_ + "@user_dst_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_, fmt);

      auto dst_data = output->mutable_data(place, vtype_);

A
Adam 已提交
1057
      mem_p = std::make_shared<mkldnn::memory>(dst_md, engine_, dst_data);
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      auto dst_data = output->mutable_data(place, vtype_);
      mem_p->set_data_handle(dst_data);
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::reorder> AcquireReorder(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    auto prim_key = key_ + "@reorder_p";
    auto reorder_p =
        std::static_pointer_cast<mkldnn::reorder>(dev_ctx_.GetBlob(prim_key));
    if (reorder_p == nullptr) {
      reorder_p =
          std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
      dev_ctx_.SetBlob(prim_key, reorder_p);
    }
    return reorder_p;
  }

 private:
A
Adam 已提交
1081
  std::vector<int64_t> dims_;
1082 1083 1084 1085
  framework::proto::VarType::Type vtype_;
  mkldnn::memory::data_type dtype_;
};

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
template <typename T>
struct convolutional_algorithm;

template <>
struct convolutional_algorithm<mkldnn::convolution_forward> {
  static constexpr mkldnn::algorithm T = mkldnn::algorithm::convolution_direct;
};

template <>
struct convolutional_algorithm<mkldnn::deconvolution_forward> {
  static constexpr mkldnn::algorithm T =
      mkldnn::algorithm::deconvolution_direct;
};

J
Jacek Czaja 已提交
1100 1101 1102
template <class forward_t, class backward_data_t, class backward_weights_t>
class ConvMKLDNNTemplateHandler : public MKLDNNHandler {
 public:
1103 1104 1105 1106
  ConvMKLDNNTemplateHandler(const platform::MKLDNNDeviceContext& dev_ctx,
                            mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {}

1107 1108 1109 1110 1111 1112 1113 1114 1115
  // TODO(jczaja): remove after conv int8 is adapted
  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

J
Jacek Czaja 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      std::shared_ptr<typename backward_data_t::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<typename backward_weights_t::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

A
Adam 已提交
1133
  size_t GetDstMemorySize() const { return conv_pd_->dst_desc().get_size(); }
J
Jacek Czaja 已提交
1134

1135
  MKLDNNMemoryFormat GetDstFormat() const {
A
Adam 已提交
1136
    return paddle::platform::GetMKLDNNFormat(conv_pd_->dst_desc());
J
Jacek Czaja 已提交
1137 1138 1139
  }

  size_t GetDiffWeightsMemorySize() const {
A
Adam 已提交
1140
    return conv_bwd_weights_pd_->diff_weights_desc().get_size();
J
Jacek Czaja 已提交
1141 1142 1143
  }

  size_t GetDiffSourceMemorySize() const {
A
Adam 已提交
1144
    return conv_bwd_data_pd_->diff_src_desc().get_size();
J
Jacek Czaja 已提交
1145 1146 1147 1148 1149
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1150 1151
    auto src_pd = conv_bwd_weights_pd_->src_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1152 1153 1154 1155 1156 1157 1158
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1159 1160
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1161 1162 1163 1164 1165 1166 1167
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
A
Adam 已提交
1168
        conv_bwd_weights_pd_->diff_weights_desc(), ptr, "@diff_weights_mem_p");
J
Jacek Czaja 已提交
1169 1170
  }

1171 1172 1173 1174 1175 1176
  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_desc(), "@diff_weights_mem_p");
  }

J
Jacek Czaja 已提交
1177 1178 1179
  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1180 1181
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1182 1183 1184 1185 1186 1187 1188
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1189 1190
    auto weights_pd = conv_bwd_data_pd_->weights_desc();
    auto user_pd = user_weights_memory_p->get_desc();
J
Jacek Czaja 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
A
Adam 已提交
1211 1212
    return this->AcquireMemoryFromPrimitive(conv_bwd_data_pd_->diff_src_desc(),
                                            ptr, "@diff_src_mem_p");
J
Jacek Czaja 已提交
1213 1214 1215
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
A
Adam 已提交
1216
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_desc(), ptr,
J
Jacek Czaja 已提交
1217 1218 1219 1220 1221 1222
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1223 1224
    auto src_pd = conv_pd_->src_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1225 1226 1227 1228
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

A
Adam 已提交
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
  std::shared_ptr<mkldnn::memory> AcquireWeightsMemory(
      const mkldnn::memory::desc& md, void* ptr,
      user_function custom_func = {}) {
    return this->AcquireMemory(md, ptr, "@user_weights_mem_p", custom_func);
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_bias_mem_p");
  }

J
Jacek Czaja 已提交
1240 1241 1242
  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
1243 1244
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
A
Adam 已提交
1245 1246
    auto user_weights_pd = user_weights_memory_p->get_desc();
    auto weights_pd = conv_pd_->weights_desc();
1247 1248 1249
    return this->AcquireMemory(
        weights_pd, user_weights_pd, user_weights_memory_p, "@weights_mem_p",
        pipeline, is_persistent, is_INT8, scale_data, mask);
J
Jacek Czaja 已提交
1250 1251 1252 1253
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
1254 1255 1256 1257
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
A
Adam 已提交
1258 1259
    auto user_bias_pd = user_bias_memory_p->get_desc();
    auto bias_pd = conv_pd_->bias_desc();
J
Jacek Czaja 已提交
1260
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
1261 1262
                               "@bias_mem_p", pipeline, is_persistent, is_INT8,
                               scale_data, mask);
J
Jacek Czaja 已提交
1263 1264
  }

1265
  mkldnn::primitive_attr CreatePostOps(
1266 1267
      std::string fuse_activation, float fuse_alpha, float fuse_beta,
      bool fuse_residual_conn, const std::vector<float> output_shift_scale = {},
1268
      float sum_scale = 1.0f) const {
1269 1270
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
1271 1272 1273 1274
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
1275 1276 1277 1278 1279 1280
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
1281
      post_operations.append_sum(sum_scale);
1282 1283 1284
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
1285
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
1286 1287
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
1288
                                     fuse_alpha, fuse_beta);
1289
    } else if (fuse_activation == "relu6") {
1290 1291 1292
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale,
                                     mkldnn::algorithm::eltwise_bounded_relu,
1293
                                     fuse_alpha, fuse_beta);
1294 1295 1296 1297
    } else if (fuse_activation == "swish") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_swish,
                                     fuse_alpha, fuse_beta);
1298
    }
1299 1300 1301 1302 1303 1304 1305 1306
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }

  std::shared_ptr<typename forward_t::primitive_desc>
  AcquireConvolutionPrimitiveDescriptor(
      const mkldnn::memory::desc& src, const mkldnn::memory::desc& weights,
      boost::optional<const mkldnn::memory::desc&> bias,
A
Adam 已提交
1307
      const mkldnn::memory::desc& dst, const std::vector<int64_t>& strides,
1308
      const std::vector<int64_t>& dilations,
A
Adam 已提交
1309
      const std::vector<int64_t>& paddings, const mkldnn::engine& engine,
1310 1311
      const std::string& fuse_activation, float fuse_alpha, float fuse_beta,
      const bool fuse_residual_conn, mkldnn::prop_kind fwd_prop_kind,
1312 1313
      const std::vector<float> output_shift_scale = {},
      const float sum_scale = 1.0f) {
1314 1315 1316 1317
    // Conv PD has to be passed to Grad op that
    // may be exxecuted by diffrent thread, hence
    // for that one we use key that does not contain TID
    const std::string key_conv_pd = key_common_ + "@conv_pd";
1318

1319
    conv_pd_ = std::static_pointer_cast<typename forward_t::primitive_desc>(
1320 1321
        dev_ctx_.GetBlob(key_conv_pd));

1322 1323 1324 1325 1326 1327 1328 1329 1330
    if (conv_pd_ == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);

      conv_pd_ = std::static_pointer_cast<typename forward_t::primitive_desc>(
          dev_ctx_.GetBlob(key_conv_pd));
      if (conv_pd_ == nullptr) {
        mkldnn::memory::dims stride_dims = strides;
1331
        mkldnn::memory::dims dilations_dims = dilations;
1332
        auto mkldnn_paddings = ToMkldnnPadding(paddings);
1333 1334

        auto conv_desc =
A
Adam 已提交
1335 1336
            bias ? typename forward_t::desc(
                       fwd_prop_kind, convolutional_algorithm<forward_t>::T,
1337
                       src, weights, *bias, dst, stride_dims, dilations_dims,
A
Adam 已提交
1338 1339 1340
                       mkldnn_paddings[0], mkldnn_paddings[1])
                 : typename forward_t::desc(
                       fwd_prop_kind, convolutional_algorithm<forward_t>::T,
1341 1342
                       src, weights, dst, stride_dims, dilations_dims,
                       mkldnn_paddings[0], mkldnn_paddings[1]);
1343

1344
        mkldnn::primitive_attr conv_attr =
1345 1346
            CreatePostOps(fuse_activation, fuse_alpha, fuse_beta,
                          fuse_residual_conn, output_shift_scale, sum_scale);
1347 1348 1349 1350 1351 1352

        conv_pd_.reset(new typename forward_t::primitive_desc(
            conv_desc, conv_attr, engine));
        // Save conv_pd/src_memory/weights_memory for backward pass
        dev_ctx_.SetBlob(key_conv_pd, conv_pd_);
      }
1353 1354 1355 1356 1357
    }

    return conv_pd_;
  }

A
Adam 已提交
1358
  std::shared_ptr<forward_t> AcquireConvolution() {
J
Jacek Czaja 已提交
1359 1360 1361 1362
    auto prim_key = key_ + "@conv_p";
    auto conv_p =
        std::static_pointer_cast<forward_t>(dev_ctx_.GetBlob(prim_key));
    if (conv_p == nullptr) {
A
Adam 已提交
1363
      conv_p = std::make_shared<forward_t>(*conv_pd_);
J
Jacek Czaja 已提交
1364 1365 1366 1367 1368 1369

      dev_ctx_.SetBlob(prim_key, conv_p);
    }
    return conv_p;
  }

A
Adam 已提交
1370
  std::shared_ptr<backward_weights_t> AcquireConvolutionBackwardWeights() {
J
Jacek Czaja 已提交
1371 1372 1373 1374 1375
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p = std::static_pointer_cast<backward_weights_t>(
        dev_ctx_.GetBlob(prim_key));
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
A
Adam 已提交
1376 1377
      conv_bwd_weights_p =
          std::make_shared<backward_weights_t>(*conv_bwd_weights_pd_);
J
Jacek Czaja 已提交
1378 1379 1380 1381 1382
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    }
    return conv_bwd_weights_p;
  }

A
Adam 已提交
1383
  std::shared_ptr<backward_data_t> AcquireConvolutionBackwardData() {
J
Jacek Czaja 已提交
1384 1385 1386 1387
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<backward_data_t>(dev_ctx_.GetBlob(prim_key));
    if (conv_bwd_data_p == nullptr) {
A
Adam 已提交
1388
      conv_bwd_data_p = std::make_shared<backward_data_t>(*conv_bwd_data_pd_);
J
Jacek Czaja 已提交
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    }
    return conv_bwd_data_p;
  }

 private:
  std::shared_ptr<typename forward_t::primitive_desc> conv_pd_;
  std::shared_ptr<typename backward_weights_t::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<typename backward_data_t::primitive_desc> conv_bwd_data_pd_;
};

using ConvMKLDNNHandler =
    ConvMKLDNNTemplateHandler<mkldnn::convolution_forward,
                              mkldnn::convolution_backward_data,
                              mkldnn::convolution_backward_weights>;

using ConvTransposeMKLDNNHandler =
    ConvMKLDNNTemplateHandler<mkldnn::deconvolution_forward,
                              mkldnn::deconvolution_backward_data,
                              mkldnn::deconvolution_backward_weights>;
1410

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
template <typename T>
static std::shared_ptr<mkldnn::memory> SetDstMemory(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler) {
  T* output_data =
      output->mutable_data<T>(ctx.GetPlace(), handler->GetDstMemorySize());
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
  return dst_memory_p;
}

template <typename T>
static std::shared_ptr<mkldnn::memory> SetDstMemory(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const framework::Tensor* residual_param,
    const mkldnn::memory::desc& user_residual_md,
    const std::shared_ptr<ConvMKLDNNHandler>& handler,
    std::vector<mkldnn::primitive>* pipeline) {
  const T* residual_param_data = residual_param->data<T>();
1430 1431 1432 1433
  PADDLE_ENFORCE_NOT_NULL(
      residual_param_data,
      platform::errors::PreconditionNotMet("Residual parameter is required for "
                                           "the DNNL conv+elementwise_add "
G
GaoWei8 已提交
1434
                                           "fusion, but now it is missing."));
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
  std::shared_ptr<mkldnn::memory> user_residual_memory_p =
      handler->AcquireResidualDataMemory(user_residual_md,
                                         to_void_cast<T>(residual_param_data));
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromResidualDataMemory(
          user_residual_memory_p, to_void_cast<T>(output_data), *pipeline);
  return dst_memory_p;
}

template <typename T>
static void SetDstMemoryHandler(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler,
    std::shared_ptr<mkldnn::memory> dst_memory_p) {
  T* output_data =
      output->mutable_data<T>(ctx.GetPlace(), handler->GetDstMemorySize());
  dst_memory_p->set_data_handle(to_void_cast<T>(output_data));
}

1455 1456 1457
template <typename T>
static void SetDstMemoryQuantized(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
A
Adam 已提交
1458 1459
    std::vector<int64_t> dst_tz, const mkldnn::engine& engine,
    std::shared_ptr<mkldnn::memory::desc>& dst_md,  // NOLINT
1460 1461
    std::shared_ptr<mkldnn::memory>& dst_memory,    // NOLINT
    MKLDNNMemoryFormat output_format) {
1462 1463
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  const size_t dst_dims = dst_tz.size();
1464
  MKLDNNMemoryFormat dst_fmt;
G
GaoWei8 已提交
1465 1466 1467 1468
  PADDLE_ENFORCE_LE(dst_dims, 5, platform::errors::InvalidArgument(
                                     "Dst memory for quantization can not have "
                                     "dims > 5. But received dst_dims is %d.",
                                     dst_dims));
1469
  dst_fmt = platform::MKLDNNFormatForSize(dst_dims, output_format);
1470

A
Adam 已提交
1471
  auto tmp_dst_md = platform::MKLDNNMemDesc(
1472
      {dst_tz}, paddle::framework::ToMKLDNNDataType(
1473
                    framework::DataTypeTrait<T>::DataType()),
1474
      dst_fmt);
A
Adam 已提交
1475 1476 1477
  dst_md.reset(new mkldnn::memory::desc(tmp_dst_md));
  dst_memory.reset(
      new mkldnn::memory(*dst_md, engine, to_void_cast<T>(output_data)));
1478 1479
}

J
Jacek Czaja 已提交
1480 1481
}  // namespace platform
}  // namespace paddle