scatter_func.h 3.9 KB
Newer Older
Z
Zhuoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <cstring>
Z
Zhuoyuan 已提交
17
#include "paddle/framework/ddim.h"
Z
Zhuoyuan 已提交
18 19 20 21 22 23 24
#include "paddle/framework/tensor.h"
#include "paddle/platform/place.h"

/**
 * Return a updated tensor from source tensor, scattered according to index:
 * dst[i] += src[index[i]]
 * input[src]: type-T source Tensor
Z
Zhuoyuan 已提交
25
 * input[index]: type-int index Tensor (1-D)
Z
Zhuoyuan 已提交
26 27
 * return: output tensor
 */
Z
Zhuoyuan 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
template <typename Place, typename T>
void ScatterUpdate(Tensor* src, Tensor* dst, Tensor* index) {
  // Source shape
  auto src_dims = src->dims();
  auto dst_dims = dst->dims();
  DDim output_dims(dims_src);

  // check src shape and dst shape should match
  for (size_t i = 1; i < src_dims.size(); i++)
    PADDLE_ENFORCE(src_dims[i] == dst_dims[i]);

  int index_size = index->dims()[0];

  /* slice size */
  int slice_size = 1;
  for (size_t i = 0; i < src_dims.size(); ++i) slice_size *= src_dims[i];

  if (place == CPUPlace()) {
    // init
    output = new_tensor.mutable_data<T>(output_dims, CPUPlace());
    CPUScatterUpdate(
        src->data(), index->data(), slice_size, new_tensor->mutable_data());

  } else {  // GPU
    // init
    output = new_tensor.mutable_data<T>(output_dims, GPUPlace());
    /* how to specialize device??*/
    GPUScatterUpdate(
        d, src->data(), index->data(), slice_size, new_tensor->mutable_data());
  }
Z
Zhuoyuan 已提交
58 59 60
}

/* Implementation of CPU copy */
Z
Zhuoyuan 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
template <typename T>
void CPUScatterUpdate(const T* src,
                      const int* index,
                      const int slice_size,
                      const int index_size,
                      T* output) {
  // const size_t slice_bytes = slice_size * sizeof(T);

  for (size_t i = 0; i < index_size; ++i) {
    int index_ = index[i];
    math::vAdd<T>(slice_size,
                  src + index_ * slice_bytes,
                  output + i * slice_bytes,
                  output + i * slice_bytes);
  }
Z
Zhuoyuan 已提交
76 77 78 79 80 81
}

/* Implementation of GPU scatter:
   I suppose the GPUDevice& d, contains gpu_id and thread_id
   d = cuda_stream(gpu_id_, stream_id_);
*/
Z
Zhuoyuan 已提交
82
template <typename T>
Z
Zhuoyuan 已提交
83
void GPUScatterUpdate(const GPUDevice& d,
Z
Zhuoyuan 已提交
84 85 86 87 88 89 90 91 92 93
                      const T* src,
                      const int* index,
                      const int slice_size,
                      const int index_size,
                      T* output) {
  int block_count = slice_size * index_size;
  int thread_per_block = 1024;

  ScatterOpKernel<T><<<block_count, thread_per_block, 0, d.stream()>>>(
      src, index, output, slice_size, indices_size, slice_size, out_size);
Z
Zhuoyuan 已提交
94 95 96
}

template <typename T>
Z
Zhuoyuan 已提交
97 98 99 100 101 102 103
__global__ void ScatterOpKernel(const T* params,
                                const int* indices,
                                T* out,
                                int64 indices_size,
                                int64 slice_size,
                                int64 out_size) {
  /* I suppose we have the following macro,
Z
Zhuoyuan 已提交
104 105 106 107 108 109 110
     which I strongly suggest that we should put in cuda:
  #define CUDA_1D_KERNEL_LOOP(i, n)                            \
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \
       i += blockDim.x * gridDim.x)
  */
  CUDA_1D_KERNEL_LOOP(i, out_size) {
    int indices_i = i / slice_size;
Z
Zhuoyuan 已提交
111
    int slice_i = i - indices_i * slice_size;  // offset inside the slice
Z
Zhuoyuan 已提交
112 113 114
    int scatter_i = indices[indices_i];
    int params_i = scatter_i * slice_size + slice_i;
    out[i] += *(params + params_i);
Z
Zhuoyuan 已提交
115
  }
Z
Zhuoyuan 已提交
116
}