tensor_py.h 21.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
L
Luo Tao 已提交
16
#include <Python.h>
W
wopeizl 已提交
17 18
#include <algorithm>
#include <memory>
Q
qijun 已提交
19
#include <string>
C
chengduoZH 已提交
20 21
#include <tuple>
#include <vector>
Y
Yi Wang 已提交
22 23
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/memory/memcpy.h"
W
wopeizl 已提交
24 25
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/platform/device_context.h"
27
#include "paddle/fluid/platform/float16.h"
Q
qijun 已提交
28 29
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
30

W
wopeizl 已提交
31 32
namespace py = pybind11;

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
namespace pybind11 {
namespace detail {

// Note: use same enum number of float16 in numpy.
// import numpy as np
// print np.dtype(np.float16).num  # 23
constexpr int NPY_FLOAT16_ = 23;

// Note: Since float16 is not a builtin type in C++, we register
// paddle::platform::float16 as numpy.float16.
// Ref: https://github.com/pybind/pybind11/issues/1776
template <>
struct npy_format_descriptor<paddle::platform::float16> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_FLOAT16_);
    return reinterpret_borrow<py::dtype>(ptr);
  }
  static std::string format() {
    // Note: "e" represents float16.
    // Details at:
    // https://docs.python.org/3/library/struct.html#format-characters.
    return "e";
  }
  static PYBIND11_DESCR name() { return _("float16"); }
};

}  // namespace detail
}  // namespace pybind11

62
namespace paddle {
63
namespace pybind {
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
namespace details {

template <typename T>
struct ValidDTypeToPyArrayChecker {
  static constexpr bool kValue = false;
};

#define DECLARE_VALID_DTYPE_TO_PY_ARRAY(type) \
  template <>                                 \
  struct ValidDTypeToPyArrayChecker<type> {   \
    static constexpr bool kValue = true;      \
  }

DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::float16);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(float);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(double);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(bool);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int8_t);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(uint8_t);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int64_t);

inline std::string TensorDTypeToPyDTypeStr(
    framework::proto::VarType::Type type) {
#define TENSOR_DTYPE_TO_PY_DTYPE(T, proto_type)                             \
  if (type == proto_type) {                                                 \
    if (std::is_same<T, platform::float16>::value) {                        \
      return "e";                                                           \
    } else {                                                                \
      constexpr auto kIsValidDType = ValidDTypeToPyArrayChecker<T>::kValue; \
      PADDLE_ENFORCE_EQ(kIsValidDType, true,                                \
                        "This type of tensor cannot be expose to Python");  \
      return py::format_descriptor<T>::format();                            \
    }                                                                       \
  }

  _ForEachDataType_(TENSOR_DTYPE_TO_PY_DTYPE);
#undef TENSOR_DTYPE_TO_PY_DTYPE
  PADDLE_THROW("Unsupported data type %d", static_cast<int>(type));
}

}  // namespace details

108
template <typename T>
109
T TensorGetElement(const framework::Tensor &self, size_t offset) {
Q
qingqing01 已提交
110 111
  PADDLE_ENFORCE_LT(offset, self.numel());
  T b = static_cast<T>(0);
112
  if (platform::is_cpu_place(self.place())) {
Q
qingqing01 已提交
113 114
    b = self.data<T>()[offset];
#ifdef PADDLE_WITH_CUDA
115
  } else {
Q
qingqing01 已提交
116 117 118 119 120
    const T *a = self.data<T>();
    auto p = boost::get<platform::CUDAPlace>(self.place());
    paddle::memory::Copy(platform::CPUPlace(), &b, p, a + offset, sizeof(T),
                         nullptr);
#endif
121
  }
Q
qingqing01 已提交
122
  return b;
123 124 125
}

template <typename T>
126
void TensorSetElement(framework::Tensor *self, size_t offset, T elem) {
Q
qingqing01 已提交
127 128
  PADDLE_ENFORCE_LT(offset, self->numel());
  if (platform::is_cpu_place(self->place())) {
Y
Yu Yang 已提交
129
    self->mutable_data<T>(self->place())[offset] = elem;
Q
qingqing01 已提交
130 131 132 133 134 135 136
#ifdef PADDLE_WITH_CUDA
  } else {
    auto p = boost::get<platform::CUDAPlace>(self->place());
    T *a = self->mutable_data<T>(p);
    paddle::memory::Copy(p, a + offset, platform::CPUPlace(), &elem, sizeof(T),
                         nullptr);
#endif
137
  }
138 139
}

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
template <typename T, typename P>
void SetTensorFromPyArrayT(
    framework::Tensor *self,
    py::array_t<T, py::array::c_style | py::array::forcecast> array, P place) {
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
    dims.push_back(static_cast<int>(array.shape()[i]));
  }
  self->Resize(framework::make_ddim(dims));
  auto dst = self->mutable_data<T>(place);

  if (paddle::platform::is_cpu_place(place)) {
    std::memcpy(dst, array.data(), array.nbytes());
  } else {
#ifdef PADDLE_WITH_CUDA
    if (paddle::platform::is_cuda_pinned_place(place)) {
      std::memcpy(dst, array.data(), array.nbytes());
    } else if (paddle::platform::is_gpu_place(place)) {
      paddle::platform::GpuMemcpySync(dst, array.data(), array.nbytes(),
                                      cudaMemcpyHostToDevice);
    } else {
      PADDLE_THROW(
          "Incompatible place type: Tensor.set() supports CPUPlace, CUDAPlace "
          "and CUDAPinnedPlace, but got %s!",
          place);
    }
#else
    PADDLE_THROW("Not supported GPU, please compile WITH_GPU option");
#endif
  }
}

template <typename P>
void SetTensorFromPyArray(framework::Tensor *self, pybind11::array array,
                          P place) {
  if (py::isinstance<py::array_t<float>>(array)) {
    SetTensorFromPyArrayT<float, P>(self, array, place);
  } else if (py::isinstance<py::array_t<int>>(array)) {
    SetTensorFromPyArrayT<int, P>(self, array, place);
  } else if (py::isinstance<py::array_t<int64_t>>(array)) {
    SetTensorFromPyArrayT<int64_t, P>(self, array, place);
  } else if (py::isinstance<py::array_t<double>>(array)) {
    SetTensorFromPyArrayT<double, P>(self, array, place);
  } else if (py::isinstance<py::array_t<int8_t>>(array)) {
    SetTensorFromPyArrayT<int8_t, P>(self, array, place);
  } else if (py::isinstance<py::array_t<uint8_t>>(array)) {
    SetTensorFromPyArrayT<uint8_t, P>(self, array, place);
  } else if (py::isinstance<py::array_t<paddle::platform::float16>>(array)) {
    SetTensorFromPyArrayT<paddle::platform::float16, P>(self, array, place);
  } else if (py::isinstance<py::array_t<uint16_t>>(array)) {
    // TODO(cql): temporary keeping uint16, should be depracated later
    SetTensorFromPyArrayT<paddle::platform::float16, P>(self, array, place);
  } else if (py::isinstance<py::array_t<bool>>(array)) {
    SetTensorFromPyArrayT<bool, P>(self, array, place);
  } else {
    PADDLE_THROW(
        "Incompatible data or style type: tensor.set() supports bool, float16, "
        "float32, "
        "float64, "
        "int8, int32, int64 and uint8, uint16, but got %s!",
        array.dtype());
  }
}

205
template <typename T>
Q
qijun 已提交
206
void PyCPUTensorSetFromArray(
207 208 209 210
    framework::Tensor *self,
    pybind11::array_t<T, pybind11::array::c_style | pybind11::array::forcecast>
        array,
    paddle::platform::CPUPlace place) {
Q
qijun 已提交
211
  std::vector<int64_t> dims;
212
  dims.reserve(array.ndim());
S
fix bug  
sneaxiy 已提交
213
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
C
chengduoZH 已提交
214
    dims.push_back(static_cast<int>(array.shape()[i]));
215 216
  }

217 218
  self->Resize(framework::make_ddim(dims));
  auto *dst = self->mutable_data<T>(place);
219 220 221
  std::memcpy(dst, array.data(), sizeof(T) * array.size());
}

222
template <>
C
chengduoZH 已提交
223 224
// This following specialization maps uint16_t in the parameter type to
// platform::float16.
S
sneaxiy 已提交
225
inline void PyCPUTensorSetFromArray(
226 227 228 229 230
    framework::Tensor *self,
    pybind11::array_t<uint16_t,
                      pybind11::array::c_style | pybind11::array::forcecast>
        array,
    paddle::platform::CPUPlace place) {
231 232
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
S
fix bug  
sneaxiy 已提交
233
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
C
chengduoZH 已提交
234
    dims.push_back(static_cast<int>(array.shape()[i]));
235
  }
236 237
  self->Resize(framework::make_ddim(dims));
  auto *dst = self->mutable_data<platform::float16>(place);
238 239 240
  std::memcpy(dst, array.data(), sizeof(uint16_t) * array.size());
}

W
wopeizl 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
template <typename T, size_t D>
void _sliceCompute(const framework::Tensor *in, framework::Tensor *out,
                   const platform::CPUDeviceContext &ctx,
                   const std::vector<int> &axes,
                   const std::vector<int> &starts) {
  auto &eigen_place = *ctx.eigen_device();
  auto place = in->place();
  auto out_dims = out->dims();
  auto in_dims = in->dims();

  auto offsets = Eigen::array<int, D>();
  auto extents = Eigen::array<int, D>();
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = out_dims[i];
  }
  int start;
  for (size_t i = 0; i < axes.size(); ++i) {
    start = starts[i];
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
  auto in_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *in);
  auto out_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *out);
  out_t.device(eigen_place) = in_t.slice(offsets, extents);
}

template <typename T>
void _concatCompute(const std::vector<paddle::framework::Tensor> &ins,
                    paddle::framework::Tensor *out,
                    const platform::CPUDeviceContext &ctx, int64_t axis) {
  if (axis == 0 && ins.size() < 10) {
    size_t output_offset = 0;
    for (auto &in : ins) {
      auto in_stride = framework::stride_numel(in.dims());
      auto out_stride = framework::stride_numel(out->dims());
      paddle::operators::StridedNumelCopyWithAxis<T>(
          ctx, axis, out->data<T>() + output_offset, out_stride, in.data<T>(),
          in_stride, in_stride[axis]);
      output_offset += in_stride[axis];
    }
  } else {
    paddle::operators::math::ConcatFunctor<platform::CPUDeviceContext, T>
        concat_functor;
    concat_functor(ctx, ins, static_cast<int>(axis), out);
  }
}

void _getSliceinfo(const framework::Tensor &self, py::object obj,
                   const int64_t dim, int64_t *pstart, int64_t *pstop,
                   int64_t *pstep, int64_t *pslicelength) {
  auto &start = *pstart;
  auto &stop = *pstop;
  auto &step = *pstep;
  auto &slicelength = *pslicelength;
  const framework::DDim &srcDDim = self.dims();
  if (dim < 0 || dim >= srcDDim.size()) {
    throw py::index_error();
  }
  if (py::isinstance<py::slice>(obj)) {
    size_t lstart, lstop, lstep, lslicelength;
    py::slice s = static_cast<py::slice>(obj);
    if (!s.compute(srcDDim[dim], &lstart, &lstop, &lstep, &lslicelength)) {
      throw py::index_error();
    }
    start = static_cast<int64_t>(lstart);
    stop = static_cast<int64_t>(lstop);
    step = static_cast<int64_t>(lstep);
    slicelength = static_cast<int64_t>(lslicelength);
  } else if (py::isinstance<py::int_>(obj)) {
    start = static_cast<int64_t>(static_cast<py::int_>(obj));
    if (std::abs(start) >= srcDDim[dim]) {
      throw py::index_error();
    }
    start = (start >= 0) ? start : srcDDim[dim] - start;
    stop = start + 1;
    step = 1;
    slicelength = 1;
  } else {
    throw py::index_error();
  }
}

inline framework::Tensor *_getTensor(const framework::Tensor &self,
                                     const framework::DDim &ddim) {
  framework::Tensor *output = new framework::Tensor();
  output->Resize(ddim);
  auto place = self.place();
  if (platform::is_cpu_place(place)) {
    output->mutable_data(boost::get<platform::CPUPlace>(place), self.type());
#ifdef PADDLE_WITH_CUDA
  } else {
    if (platform::is_cuda_pinned_place(place)) {
      output->mutable_data(boost::get<platform::CUDAPinnedPlace>(place),
                           self.type());
    } else if ((platform::is_gpu_place(place))) {
      output->mutable_data(boost::get<platform::CUDAPlace>(place), self.type());
    }
#endif
  }
  return output;
}

template <typename T>
void _sliceDapper(const framework::Tensor *in, framework::Tensor *out,
                  const platform::CPUDeviceContext &ctx,
                  const std::vector<int> &axes, const std::vector<int> &starts,
                  int size) {
  switch (size) {
    case 1:
      _sliceCompute<T, 1>(in, out, ctx, axes, starts);
      break;
    case 2:
      _sliceCompute<T, 2>(in, out, ctx, axes, starts);
      break;
    case 3:
      _sliceCompute<T, 3>(in, out, ctx, axes, starts);
      break;
    case 4:
      _sliceCompute<T, 4>(in, out, ctx, axes, starts);
      break;
    case 5:
      _sliceCompute<T, 5>(in, out, ctx, axes, starts);
      break;
    case 6:
      _sliceCompute<T, 6>(in, out, ctx, axes, starts);
      break;
    case 7:
      _sliceCompute<T, 7>(in, out, ctx, axes, starts);
      break;
    case 8:
      _sliceCompute<T, 8>(in, out, ctx, axes, starts);
      break;
    case 9:
      _sliceCompute<T, 9>(in, out, ctx, axes, starts);
      break;
    default:
      PADDLE_THROW("dim size not exepected, current is %d", size);
      break;
  }
}

template <typename T>
inline framework::Tensor *_sliceWrapper(const framework::Tensor &self,
                                        const platform::CPUDeviceContext &ctx,
                                        py::object obj, int dim, int64_t start,
                                        int64_t slicelength) {
  framework::DDim dstDDim = self.dims();
  dstDDim[dim] = static_cast<int64_t>(slicelength);
  std::vector<int> axes({dim});
  std::vector<int> starts({static_cast<int>(start)});
  framework::Tensor *output = _getTensor(self, dstDDim);
  _sliceDapper<T>(&self, output, ctx, axes, starts, dstDDim.size());
  return output;
}

template <typename T>
inline framework::Tensor *_sliceAndConcat(const framework::Tensor &self,
                                          py::object obj, int dim) {
  platform::CPUDeviceContext ctx;
  int64_t start, stop, step, slicelength;
  _getSliceinfo(self, obj, dim, &start, &stop, &step, &slicelength);
  if (step == 1 || slicelength == 1) {
    return _sliceWrapper<T>(self, ctx, obj, dim, start, slicelength);
  } else {
    std::vector<framework::Tensor> ins;
    for (auto i = 0; i < slicelength; ++i, start += step) {
      ins.emplace_back(*_sliceWrapper<T>(self, ctx, obj, dim, start, 1));
    }

    // do the concat operation
    framework::DDim dstDDim = self.dims();
    dstDDim[dim] = static_cast<int64_t>(slicelength);
    framework::Tensor *output1 = _getTensor(self, dstDDim);
    _concatCompute<T>(ins, output1, ctx, dim);
    return output1;
  }
}

inline framework::Tensor *_sliceTensor(const framework::Tensor &self,
                                       py::object obj, int dim) {
  auto src_type = self.type();
  switch (src_type) {
    case framework::proto::VarType::FP16:
      return _sliceAndConcat<paddle::platform::float16>(self, obj, dim);
    case framework::proto::VarType::FP32:
      return _sliceAndConcat<float>(self, obj, dim);
    case framework::proto::VarType::FP64:
      return _sliceAndConcat<double>(self, obj, dim);
    case framework::proto::VarType::INT32:
      return _sliceAndConcat<int>(self, obj, dim);
    case framework::proto::VarType::INT64:
      return _sliceAndConcat<int64_t>(self, obj, dim);
    case framework::proto::VarType::BOOL:
      return _sliceAndConcat<bool>(self, obj, dim);
    case framework::proto::VarType::INT16:
      return _sliceAndConcat<bool>(self, obj, dim);
    case framework::proto::VarType::UINT8:
      return _sliceAndConcat<bool>(self, obj, dim);
    default:
      PADDLE_THROW("Not support type %d", src_type);
  }
}

inline framework::Tensor *_pySliceTensor(const framework::Tensor &self,
                                         py::object obj) {
  if (py::isinstance<py::tuple>(obj)) {
    py::list l = static_cast<py::list>(obj);
    std::unique_ptr<framework::Tensor> target;
    framework::Tensor *src = const_cast<framework::Tensor *>(&self);
    for (auto i = 0; i < static_cast<int>(l.size()); ++i) {
      src = _sliceTensor(*src, l[i], i);
      if (i + 1 == static_cast<int>(l.size())) {
        return src;
      } else {
        target.reset(src);
      }
    }
    return nullptr;
  } else {
    return _sliceTensor(self, obj, 0);
  }
}

inline framework::Tensor *PySliceTensor(const framework::Tensor &self,
                                        py::object obj) {
  if (platform::is_gpu_place(self.place())) {
    std::unique_ptr<framework::Tensor> holder;
    framework::Tensor src;
    framework::TensorCopySync(self, platform::CPUPlace(), &src);
    framework::Tensor *output = _pySliceTensor(src, obj);
    holder.reset(output);
    framework::Tensor *dst = _getTensor(*output, output->dims());
    framework::TensorCopySync(*output, self.place(), dst);
    return dst;
  } else {
    return _pySliceTensor(self, obj);
  }
}

488
#ifdef PADDLE_WITH_CUDA
Q
qijun 已提交
489 490
template <typename T>
void PyCUDATensorSetFromArray(
491 492 493 494
    framework::Tensor *self,
    pybind11::array_t<T, pybind11::array::c_style | pybind11::array::forcecast>
        array,
    paddle::platform::CUDAPlace place) {
Q
qijun 已提交
495
  std::vector<int64_t> dims;
Q
qijun 已提交
496
  dims.reserve(array.ndim());
S
fix bug  
sneaxiy 已提交
497
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
C
chengduoZH 已提交
498
    dims.push_back(static_cast<int>(array.shape()[i]));
Q
qijun 已提交
499
  }
500 501
  self->Resize(framework::make_ddim(dims));
  auto *dst = self->mutable_data<T>(place);
Y
Yu Yang 已提交
502 503
  paddle::platform::GpuMemcpySync(dst, array.data(), sizeof(T) * array.size(),
                                  cudaMemcpyHostToDevice);
504
}
505 506

template <>
C
chengduoZH 已提交
507 508
// This following specialization maps uint16_t in the parameter type to
// platform::float16.
S
sneaxiy 已提交
509
inline void PyCUDATensorSetFromArray(
510 511 512 513 514
    framework::Tensor *self,
    pybind11::array_t<uint16_t,
                      pybind11::array::c_style | pybind11::array::forcecast>
        array,
    paddle::platform::CUDAPlace place) {
515 516
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
S
fix bug  
sneaxiy 已提交
517
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
C
chengduoZH 已提交
518
    dims.push_back(static_cast<int>(array.shape()[i]));
519 520
  }

521 522
  self->Resize(framework::make_ddim(dims));
  auto *dst = self->mutable_data<platform::float16>(place);
Y
Yu Yang 已提交
523 524 525
  paddle::platform::GpuMemcpySync(dst, array.data(),
                                  sizeof(uint16_t) * array.size(),
                                  cudaMemcpyHostToDevice);
526
}
C
chengduoZH 已提交
527 528 529

template <typename T>
void PyCUDAPinnedTensorSetFromArray(
530 531 532
    framework::Tensor *self,
    pybind11::array_t<T, pybind11::array::c_style | pybind11::array::forcecast>
        array,
C
chengduoZH 已提交
533 534 535
    const paddle::platform::CUDAPinnedPlace &place) {
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
S
fix bug  
sneaxiy 已提交
536
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
C
chengduoZH 已提交
537 538 539
    dims.push_back(static_cast<int>(array.shape()[i]));
  }

540 541
  self->Resize(framework::make_ddim(dims));
  auto *dst = self->mutable_data<T>(place);
C
chengduoZH 已提交
542 543 544 545
  std::memcpy(dst, array.data(), sizeof(T) * array.size());
}

template <>
C
chengduoZH 已提交
546 547
// This following specialization maps uint16_t in the parameter type to
// platform::float16.
S
sneaxiy 已提交
548
inline void PyCUDAPinnedTensorSetFromArray(
549 550 551 552
    framework::Tensor *self,
    pybind11::array_t<uint16_t,
                      pybind11::array::c_style | pybind11::array::forcecast>
        array,
C
chengduoZH 已提交
553 554 555
    const paddle::platform::CUDAPinnedPlace &place) {
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
S
fix bug  
sneaxiy 已提交
556
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
C
chengduoZH 已提交
557 558 559
    dims.push_back(static_cast<int>(array.shape()[i]));
  }

560 561
  self->Resize(framework::make_ddim(dims));
  auto *dst = self->mutable_data<platform::float16>(place);
C
chengduoZH 已提交
562 563
  std::memcpy(dst, array.data(), sizeof(uint16_t) * array.size());
}
Q
qijun 已提交
564
#endif
565

566
inline py::array TensorToPyArray(const framework::Tensor &tensor) {
Q
qingqing01 已提交
567 568 569
  if (!tensor.IsInitialized()) {
    return py::array();
  }
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
  bool is_gpu_tensor = platform::is_gpu_place(tensor.place());
  const auto &tensor_dims = tensor.dims();
  auto tensor_dtype = tensor.type();
  size_t sizeof_dtype = framework::SizeOfType(tensor_dtype);

  std::vector<size_t> py_dims(tensor_dims.size());
  std::vector<size_t> py_strides(tensor_dims.size());

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    py_dims[i] = (size_t)tensor_dims[i];
    py_strides[i] = sizeof_dtype * numel;
    numel *= py_dims[i];
  }

  const void *tensor_buf_ptr = tensor.data<void>();

  std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(tensor.type());

  if (!is_gpu_tensor) {
    return py::array(py::buffer_info(
        const_cast<void *>(tensor_buf_ptr), sizeof_dtype, py_dtype_str,
        static_cast<size_t>(tensor.dims().size()), py_dims, py_strides));
  }

#ifdef PADDLE_WITH_CUDA
  py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
  PADDLE_ENFORCE(py_arr.writeable() && py_arr.owndata(),
                 "PyArray must be writable and own data, otherwise memory leak "
                 "or double free would occur");

  size_t copy_bytes = sizeof_dtype * numel;
  paddle::platform::GpuMemcpySync(py_arr.mutable_data(), tensor_buf_ptr,
                                  copy_bytes, cudaMemcpyDeviceToHost);
  return py_arr;
#else
  PADDLE_THROW("CUDAPlace is not supported when not compiled with CUDA");
#endif
}

610 611
}  // namespace pybind
}  // namespace paddle