logsumexp_kernel_impl.h 3.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <type_traits>
#include <vector>

#include "paddle/phi/kernels/cpu/reduce.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/logsumexp_kernel.h"

namespace phi {

#define HANDLE_DIM(NDIM, RDIM)                               \
  if (ndim == NDIM && rdim == RDIM) {                        \
    ReduceFunctor<Context, T, NDIM, RDIM, LogsumexpFunctor>( \
        dev_ctx, x, out, axis, keepdim);                     \
  }

struct LogsumexpFunctor {
  template <typename Context, typename X, typename Y, typename Dim>
  void operator()(const Context& place, X* x, Y* y, const Dim& dim) {
    auto x_dim = x->dimensions();
    auto t_dim = x_dim;
    for (int i = 0; i < static_cast<int>(dim.size()); i++) {
      t_dim[dim[i]] = 1;
    }

    auto r_dim = x_dim;
    for (int i = 0; i < static_cast<int>(r_dim.size()); i++) {
      r_dim[i] = 1;
    }
    for (int i = 0; i < static_cast<int>(dim.size()); i++) {
      r_dim[dim[i]] = x_dim[dim[i]];
    }

    auto y_dim = y->dimensions();
    auto x_max = x->maximum(dim);
    y->device(place) =
        (x_max +
         (*x - x_max.reshape(t_dim).broadcast(r_dim)).exp().sum(dim).log())
            .reshape(y_dim);
  }
};

template <typename T, typename Context>
void LogsumexpKernel(const Context& dev_ctx,
                     const DenseTensor& x,
                     const std::vector<int64_t>& axis,
                     bool keepdim,
                     bool reduce_all,
                     DenseTensor* out) {
  dev_ctx.template Alloc<T>(out);

  const auto& input_dim_size = x.dims().size();
  // The dims has full dim, set the reduce_all is True
  reduce_all |= (static_cast<const int>(axis.size()) == input_dim_size);

  if (reduce_all) {
    // Flatten and reduce 1-D tensor
    auto input = phi::EigenVector<T>::Flatten(x);
    auto output = phi::EigenScalar<T>::From(*out);
    auto& place = *dev_ctx.eigen_device();
    auto reduce_dim = Eigen::array<int, 1>({{0}});
    LogsumexpFunctor()(place, &input, &output, reduce_dim);
  } else {
    int ndim = input_dim_size;
    int rdim = axis.size();
    // comments for accelerating compiling temporarily.
    // HANDLE_DIM(6, 5);
    // HANDLE_DIM(6, 4);
    // HANDLE_DIM(6, 3);
    // HANDLE_DIM(6, 2);
    // HANDLE_DIM(6, 1);
    // HANDLE_DIM(5, 4);
    // HANDLE_DIM(5, 3);
    // HANDLE_DIM(5, 2);
    // HANDLE_DIM(5, 1);
    HANDLE_DIM(4, 3);
    HANDLE_DIM(4, 2);
    HANDLE_DIM(4, 1);
    HANDLE_DIM(3, 2);
    HANDLE_DIM(3, 1);
    HANDLE_DIM(2, 1);
  }
}

}  // namespace phi