fusion_lstm_op.cc 25.1 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_lstm_op.h"
#include <string>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/cpu_lstm_compute.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/math/cpu_vec.h"
20
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
21
#include "paddle/fluid/operators/math/sequence2batch.h"
T
tensor-tang 已提交
22 23
#include "paddle/fluid/platform/cpu_info.h"

T
tensor-tang 已提交
24 25 26 27
namespace paddle {
namespace operators {

void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
28 29
  PADDLE_ENFORCE(ctx->HasInput("X"), "Assert only one Input(X) of LSTM.");
  PADDLE_ENFORCE(ctx->HasInput("WeightX"),
T
tensor-tang 已提交
30
                 "Assert only one Input(WeightX) of LSTM.");
31
  PADDLE_ENFORCE(ctx->HasInput("WeightH"),
T
tensor-tang 已提交
32
                 "Assert only one Input(WeightH) of LSTM.");
33 34 35
  PADDLE_ENFORCE(ctx->HasInput("Bias"), "Assert only one Input(Bias) of LSTM.");
  PADDLE_ENFORCE(ctx->HasOutput("XX"), "Assert only one Output(XX) of LSTM.");
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
T
tensor-tang 已提交
36
                 "Assert only one Output(Hidden) of LSTM.");
37 38
  PADDLE_ENFORCE(ctx->HasOutput("Cell"),
                 "Assert only one Output(Cell) of LSTM.");
T
tensor-tang 已提交
39

T
tensor-tang 已提交
40 41
  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");
T
tensor-tang 已提交
42

43 44
  if (ctx->HasInput("H0")) {
    PADDLE_ENFORCE(ctx->HasInput("C0"),
T
tensor-tang 已提交
45 46 47 48 49 50 51 52 53
                   "Input(Cell) and Input(Hidden) of LSTM should not "
                   "be null at the same time.");
    auto h_dims = ctx->GetInputDim("H0");
    auto c_dims = ctx->GetInputDim("C0");
    PADDLE_ENFORCE(h_dims == c_dims,
                   "The dimension of Input(H0) and Input(C0) "
                   "should be the same.");
  }

T
tensor-tang 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67
  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
                    "The rank of Input(WeightX) should be 2.");
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
                    "The first dimension of Input(WeightX) "
                    "should be %d.",
                    x_dims[1]);

  int frame_size = wx_dims[1] / 4;
  auto wh_dims = ctx->GetInputDim("WeightH");
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
                    "The rank of Input(WeightH) should be 2.");
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
                    "The first dimension of Input(WeightH) "
T
tensor-tang 已提交
68 69
                    "should be %d.",
                    frame_size);
T
tensor-tang 已提交
70 71
  PADDLE_ENFORCE_EQ(wh_dims[1], 4 * frame_size,
                    "The second dimension of Input(WeightH) "
T
tensor-tang 已提交
72 73 74 75 76 77 78
                    "should be 4 * %d.",
                    frame_size);

  auto b_dims = ctx->GetInputDim("Bias");
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
  PADDLE_ENFORCE_EQ(b_dims[0], 1,
                    "The first dimension of Input(Bias) should be 1.");
T
tensor-tang 已提交
79 80 81 82 83 84
  PADDLE_ENFORCE_EQ(
      b_dims[1], (ctx->Attrs().Get<bool>("use_peepholes") ? 7 : 4) * frame_size,
      "The second dimension of Input(Bias) should be "
      "7 * %d if enable peepholes connection or"
      "4 * %d if disable peepholes",
      frame_size, frame_size);
T
tensor-tang 已提交
85

T
tensor-tang 已提交
86
  framework::DDim out_dims({x_dims[0], frame_size});
T
tensor-tang 已提交
87 88
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
89 90
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");
T
tensor-tang 已提交
91
  int xx_width;
T
tensor-tang 已提交
92
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
93 94 95
    xx_width = wx_dims[1];
  } else {
    xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
96
    PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"),
T
tensor-tang 已提交
97
                   "Assert only one Output(BatchedInput) of LSTM.");
98
    PADDLE_ENFORCE(ctx->HasOutput("BatchedHidden"),
T
tensor-tang 已提交
99
                   "Assert only one Output(BatchedHidden) of LSTM.");
100
    PADDLE_ENFORCE(ctx->HasOutput("BatchedCell"),
T
tensor-tang 已提交
101
                   "Assert only one Output(BatchedCell) of LSTM.");
102
    PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"),
T
tensor-tang 已提交
103
                   "Assert only one Output(ReorderedH0) of LSTM");
104
    PADDLE_ENFORCE(ctx->HasOutput("ReorderedC0"),
T
tensor-tang 已提交
105
                   "Assert only one Output(ReorderedC0) of LSTM.");
T
tensor-tang 已提交
106 107 108
    ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
    ctx->SetOutputDim("BatchedHidden", out_dims);
    ctx->SetOutputDim("BatchedCell", out_dims);
T
tensor-tang 已提交
109
  }
T
tensor-tang 已提交
110 111
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
112 113 114 115 116
}

framework::OpKernelType FusionLSTMOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
T
tensor-tang 已提交
117
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
T
tensor-tang 已提交
118 119 120 121
      ctx.device_context());
}

void FusionLSTMOpMaker::Make() {
T
tensor-tang 已提交
122
  AddInput("X",
T
tensor-tang 已提交
123
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
124
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
125 126 127 128 129 130 131 132 133
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
  AddInput("WeightX",
           "(Tensor) the learnable weights of X."
           " - The shape is (M x 4D), where M is the dim size of x, D is the "
           "hidden size. "
           " - Weight = {W_cx, W_ix, W_fx, W_ox}");
  AddInput("WeightH",
           "(Tensor) same as LSTMOp, the learnable hidden-hidden weights."
T
tensor-tang 已提交
134 135 136
           " - The shape is (D x 4D), where D is the hidden size. "
           " - Weight = {W_ch, W_ih, W_fh, W_oh}");
  AddInput("Bias",
T
tensor-tang 已提交
137 138
           "(Tensor) the learnable weights. Almost same as LSTMOp"
           "Note: we should add the fc bias into this (1x4D) in bias."
T
tensor-tang 已提交
139 140 141 142 143 144 145 146
           "input-hidden bias weight and peephole connections weight if "
           "setting `use_peepholes` True. "
           "1. `use_peepholes = False` "
           " - The shape is (1 x 4D). "
           " - Bias = {b_c, b_i, b_f, b_o}."
           "2. `use_peepholes = True` "
           " - The shape is (1 x 7D). "
           " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
T
tensor-tang 已提交
147 148 149 150 151 152 153 154 155 156 157 158
  AddInput("H0",
           "(Tensor, optional) (same as LSTMOp) the initial hidden state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size and D is the hidden size.")
      .AsDispensable();
  AddInput("C0",
           "(Tensor, optional) (same as LSTMOp) (the initial cell state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size. `H0` and `C0` can be NULL but only at the same time.")
      .AsDispensable();
T
tensor-tang 已提交
159
  AddOutput("Hidden",
T
tensor-tang 已提交
160
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
T
tensor-tang 已提交
161 162
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
T
tensor-tang 已提交
163
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
T
tensor-tang 已提交
164
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
165
  AddOutput("XX",
T
tensor-tang 已提交
166 167 168
            "(LoDTensor) the result after X * WeightX (size is T x 4D)"
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
T
tensor-tang 已提交
169 170
            " D is the hidden size, M is the dim size of x input.")
      .AsIntermediate();
T
tensor-tang 已提交
171 172 173 174 175
  AddOutput("BatchedInput", "(LoDTensor) (T x 4D).").AsIntermediate();
  AddOutput("BatchedHidden", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("BatchedCell", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("ReorderedH0", "(LoDTensor) (N x D).").AsIntermediate();
  AddOutput("ReorderedC0", "(LoDTensor) (N x D).").AsIntermediate();
T
tensor-tang 已提交
176 177 178 179 180 181 182 183
  AddAttr<bool>("use_peepholes",
                "(bool, defalut: True) "
                "whether to enable diagonal/peephole connections.")
      .SetDefault(true);
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed LSTM.")
      .SetDefault(false);
T
tensor-tang 已提交
184 185 186 187
  AddAttr<bool>("use_seq",
                "(bool, defalut: True) "
                "whether to use seq mode to compute.")
      .SetDefault(true);
T
tensor-tang 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
                       "The activation for cell output, `tanh` by defalut.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddComment(R"DOC(
T
tensor-tang 已提交
206 207
Fusion Long-Short Term Memory (LSTM) Operator.
This operator fuse the X into LSTM, more details can refer to LSTM op.
T
tensor-tang 已提交
208 209 210
)DOC");
}

T
tensor-tang 已提交
211
template <typename T>
T
tensor-tang 已提交
212
class FuisonLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
213
 public:
T
tensor-tang 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
#define INIT_VEC_FUNC                                                          \
  std::function<void(const int, const T *, T *)> act_gate, act_cell, act_cand; \
  auto& act_gate_str = ctx.Attr<std::string>("gate_activation");               \
  auto& act_cell_str = ctx.Attr<std::string>("cell_activation");               \
  auto& act_cand_str = ctx.Attr<std::string>("candidate_activation");          \
  if (platform::jit::MayIUse(platform::jit::avx)) {                            \
    math::VecActivations<T, platform::jit::avx> act_functor;                   \
    act_gate = act_functor(act_gate_str);                                      \
    act_cell = act_functor(act_cell_str);                                      \
    act_cand = act_functor(act_cand_str);                                      \
  } else {                                                                     \
    math::VecActivations<T, platform::jit::isa_any> act_functor;               \
    act_gate = act_functor(act_gate_str);                                      \
    act_cell = act_functor(act_cell_str);                                      \
    act_cand = act_functor(act_cand_str);                                      \
  }

T
tensor-tang 已提交
231 232 233 234 235 236 237 238 239 240 241 242
#define INIT_BASE_INPUT_OUTPUT                        \
  auto* x = ctx.Input<LoDTensor>("X");                \
  auto* h0 = ctx.Input<Tensor>("H0");                 \
  auto* c0 = ctx.Input<Tensor>("C0");                 \
  auto* wx = ctx.Input<Tensor>("WeightX");            \
  auto* wh = ctx.Input<Tensor>("WeightH");            \
  auto* bias = ctx.Input<Tensor>("Bias");             \
  auto* xx = ctx.Output<LoDTensor>("XX");             \
  auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
  auto* cell_out = ctx.Output<LoDTensor>("Cell");     \
  bool is_reverse = ctx.Attr<bool>("is_reverse");     \
  bool use_peepholes = ctx.Attr<bool>("use_peepholes");
T
tensor-tang 已提交
243 244 245 246 247 248 249 250 251 252

#define INIT_BASE_SIZES                  \
  auto x_dims = x->dims();   /* T x M*/  \
  auto wh_dims = wh->dims(); /* D x 4D*/ \
  const int M = x_dims[1];               \
  const int D = wh_dims[0];              \
  const int D2 = D * 2;                  \
  const int D3 = D * 3;                  \
  const int D4 = wh_dims[1];

T
tensor-tang 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
#define INIT_BASE_INPUT_DATAS                                        \
  const T* x_data = x->data<T>();                                    \
  const T* wx_data = wx->data<T>();                                  \
  const T* wh_data = wh->data<T>();                                  \
  /* diagonal weight*/                                               \
  const T* wc_data = bias->data<T>() + D4;                           \
  /* for peephole only*/                                             \
  Tensor checked_cell;                                               \
  T* checked_cell_data = nullptr;                                    \
  auto place = ctx.GetPlace();                                       \
  if (use_peepholes) {                                               \
    /* w_ic * Ct-1, w_fc * Ct-1  ; w_oc * Ct => ih*/                 \
    checked_cell_data = checked_cell.mutable_data<T>({2, D}, place); \
  }

/// Compute LSTM
#define GEMM_WH_ADDON(bs, prev, out)                                           \
  blas.GEMM(CblasNoTrans, CblasNoTrans, bs, D4, D, static_cast<T>(1), prev, D, \
            wh_data, D4, static_cast<T>(1), out, D4)

#define GET_Ct(ct_1, gates, ct)                   \
  /* C_t = C_t-1 * fgated + cand_gated * igated*/ \
  act_cand(D, gates, gates);                      \
  blas.VMUL(D, gates, gates + D, gates + D);      \
  blas.VMUL(D, ct_1, gates + D2, gates + D2);     \
  blas.VADD(D, gates + D, gates + D2, ct)

#define GET_Ht(ct, gates, ht)        \
  /* H_t = act_cell(C_t) * ogated */ \
  act_cell(D, ct, gates + D2);       \
  blas.VMUL(D, gates + D2, gates + D3, ht)

T
tensor-tang 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
#define GET_Ct_NOH0C0(gates, ct)     \
  /* C_t = igated * cgated*/         \
  act_gate(D, gates + D, gates + D); \
  act_cand(D, gates, gates);         \
  blas.VMUL(D, gates, gates + D, ct)

#define COMPUTE_CtHt_NOH0C0(gates, ct, ht) \
  GET_Ct_NOH0C0(gates, ct);                \
  act_gate(D, gates + D3, gates + D3);     \
  GET_Ht(ct, gates, ht)

#define COMPUTE_CtHt_PEEPHOLE_NOH0C0(gates, ct, ht) \
  GET_Ct_NOH0C0(gates, ct);                         \
  /* get outgated, put W_oc * C_t on igated */      \
  blas.VMUL(D, wc_data + D2, ct, gates + D);        \
  blas.VADD(D, gates + D, gates + D3, gates + D3);  \
  act_gate(D, gates + D3, gates + D3);              \
T
tensor-tang 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
  GET_Ht(ct, gates, ht)

#define COMPUTE_CtHt(gates, ct_1, ct, ht) \
  act_gate(D3, gates + D, gates + D);     \
  GET_Ct(ct_1, gates, ct);                \
  GET_Ht(ct, gates, ht)

#define COMPUTE_CtHt_PEEPHOLE(gates, ct_1, ct, ht)        \
  /* get fgated and igated*/                              \
  blas.VMUL(D, wc_data, ct_1, checked_cell_data);         \
  blas.VMUL(D, wc_data + D, ct_1, checked_cell_data + D); \
  blas.VADD(D2, checked_cell_data, gates + D, gates + D); \
  act_gate(D2, gates + D, gates + D);                     \
  GET_Ct(ct_1, gates, ct);                                \
  /* get ogated*/                                         \
  blas.VMUL(D, wc_data + D2, ct, gates + D);              \
  blas.VADD(D, gates + D, gates + D3, gates + D3);        \
  act_gate(D, gates + D3, gates + D3);                    \
  GET_Ht(ct, gates, ht)

T
tensor-tang 已提交
322 323
  void SeqCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
324 325 326
    INIT_BASE_INPUT_OUTPUT
    INIT_BASE_SIZES
    INIT_VEC_FUNC
T
tensor-tang 已提交
327
    INIT_BASE_INPUT_DATAS
T
tensor-tang 已提交
328

T
tensor-tang 已提交
329
    auto x_lod = x->lod();
T
tensor-tang 已提交
330
    const int total_T = x_dims[0];
T
tensor-tang 已提交
331
    const int N = x_lod[0].size() - 1;
T
tensor-tang 已提交
332 333
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
    const T* c0_data = c0 ? c0->data<T>() : nullptr;
T
tensor-tang 已提交
334
    T* xx_data = xx->mutable_data<T>(place);
T
tensor-tang 已提交
335 336
    T* h_out_data = hidden_out->mutable_data<T>(place);
    T* c_out_data = cell_out->mutable_data<T>(place);
T
tensor-tang 已提交
337 338 339
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
    math::FCCompute<DeviceContext, T>(blas, total_T, D4, M, x_data, wx_data,
                                      xx_data, bias->data<T>());
B
Brian Liu 已提交
340

T
tensor-tang 已提交
341 342 343 344 345
    int xx_offset = D4;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 4;
T
tensor-tang 已提交
346 347
      h_out_data = h_out_data + offset;
      c_out_data = c_out_data + offset;
T
tensor-tang 已提交
348 349 350 351
      xx_offset = -D4;
      gate_offset = -D;
    }

T
tensor-tang 已提交
352 353 354 355 356 357 358
#define MOVE_ONE_STEP                    \
  prev_h_data = h_out_data;              \
  prev_c_data = c_out_data;              \
  xx_data = xx_data + xx_offset;         \
  h_out_data = h_out_data + gate_offset; \
  c_out_data = c_out_data + gate_offset

T
tensor-tang 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
#define PROCESS_H0C0_DEFINES                       \
  int bid = is_reverse ? N - 1 - i : i;            \
  int seq_len = x_lod[0][bid + 1] - x_lod[0][bid]; \
  const T* prev_c_data = nullptr;                  \
  const T* prev_h_data = nullptr;                  \
  int tstart = 0

#define PROCESS_H0C0_PEEPHOLE                                      \
  PROCESS_H0C0_DEFINES;                                            \
  if (h0_data) {                                                   \
    prev_h_data = h0_data + bid * D;                               \
    prev_c_data = c0_data + bid * D;                               \
  } else {                                                         \
    COMPUTE_CtHt_PEEPHOLE_NOH0C0(xx_data, c_out_data, h_out_data); \
    MOVE_ONE_STEP;                                                 \
    tstart = 1;                                                    \
  }

#define PROCESS_H0C0                                      \
  PROCESS_H0C0_DEFINES;                                   \
  if (h0_data) {                                          \
    prev_h_data = h0_data + bid * D;                      \
    prev_c_data = c0_data + bid * D;                      \
  } else {                                                \
    COMPUTE_CtHt_NOH0C0(xx_data, c_out_data, h_out_data); \
    MOVE_ONE_STEP;                                        \
    tstart = 1;                                           \
T
tensor-tang 已提交
386
  }
B
Brian Liu 已提交
387

T
tensor-tang 已提交
388 389
    if (use_peepholes) {
      for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
390
        PROCESS_H0C0_PEEPHOLE
T
tensor-tang 已提交
391
        for (int step = tstart; step < seq_len; ++step) {
T
tensor-tang 已提交
392 393 394 395 396 397
          GEMM_WH_ADDON(1, prev_h_data, xx_data);
          COMPUTE_CtHt_PEEPHOLE(xx_data, prev_c_data, c_out_data, h_out_data);
          MOVE_ONE_STEP;
        }
      }
    } else {
T
tensor-tang 已提交
398
      // TODO(TJ): unly workaround, clean me
T
tensor-tang 已提交
399
      std::function<void(T*, const T*, T*, T*)> compute_ctht;
T
tensor-tang 已提交
400 401 402 403 404
      if (platform::jit::MayIUse(platform::jit::avx) &&
          act_gate_str == "sigmoid" && act_cand_str == "tanh" &&
          act_cell_str == "tanh" && D == 8) {
        compute_ctht = math::lstm_compute_ctht<T>;
      } else {
T
tensor-tang 已提交
405
        compute_ctht = [&](T* gates, const T* ct_1, T* ct, T* ht) {
T
tensor-tang 已提交
406
          COMPUTE_CtHt(gates, ct_1, ct, ht);
T
tensor-tang 已提交
407
        };
T
tensor-tang 已提交
408
      }
T
tensor-tang 已提交
409
      for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
410
        PROCESS_H0C0
T
tensor-tang 已提交
411
        for (int step = tstart; step < seq_len; ++step) {
T
tensor-tang 已提交
412
          GEMM_WH_ADDON(1, prev_h_data, xx_data);
T
tensor-tang 已提交
413
          compute_ctht(xx_data, prev_c_data, c_out_data, h_out_data);
T
tensor-tang 已提交
414 415
          MOVE_ONE_STEP;
        }
T
tensor-tang 已提交
416
      }
T
tensor-tang 已提交
417
    }
T
tensor-tang 已提交
418 419
#undef PROCESS_H0C0_DEFINES
#undef PROCESS_H0C0_PEEPHOLE
T
tensor-tang 已提交
420 421
#undef PROCESS_H0C0
#undef MOVE_ONE_STEP
T
tensor-tang 已提交
422 423 424 425
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = platform::CPUDeviceContext;
T
tensor-tang 已提交
426
    INIT_BASE_INPUT_OUTPUT
427
    INIT_BASE_SIZES
T
tensor-tang 已提交
428
    if (x->lod()[0].size() == 2) {
429
      xx->Resize({x_dims[0], D4});
T
tensor-tang 已提交
430
      SeqCompute(ctx);
T
tensor-tang 已提交
431
      return;
T
tensor-tang 已提交
432 433
    }
    INIT_VEC_FUNC
T
tensor-tang 已提交
434
    INIT_BASE_INPUT_DATAS
T
tensor-tang 已提交
435

T
tensor-tang 已提交
436 437 438 439 440 441 442 443 444 445 446
    auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
    auto* reordered_c0 = ctx.Output<Tensor>("ReorderedC0");
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_c_out = ctx.Output<LoDTensor>("BatchedCell");
    auto* batched_h_out = ctx.Output<LoDTensor>("BatchedHidden");
    T* xx_data = xx->mutable_data<T>(place);
    T* batched_input_data = batched_input->mutable_data<T>(place);
    T* batched_c_out_data = batched_c_out->mutable_data<T>(place);
    T* batched_h_out_data = batched_h_out->mutable_data<T>(place);
    hidden_out->mutable_data<T>(place);
    cell_out->mutable_data<T>(place);
T
tensor-tang 已提交
447

T
tensor-tang 已提交
448
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
T
tensor-tang 已提交
449 450
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
T
tensor-tang 已提交
451 452 453 454
    if (M > D4) {
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], D4, M, x_data, wx_data,
                                        xx_data, bias->data<T>());
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
455 456
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
457 458 459
      batched_input->set_lod(xx->lod());
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], D4, M, xx_data,
                                        wx_data, batched_input_data,
460
                                        bias->data<T>());
T
tensor-tang 已提交
461 462
    }

T
tensor-tang 已提交
463 464 465 466 467 468 469
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
    reordered_c0->Resize({max_bs, D});

    int tstart = 0;
T
tensor-tang 已提交
470 471
    T* prev_h_data = nullptr;
    T* prev_c_data = nullptr;
T
tensor-tang 已提交
472 473 474 475 476 477
    if (h0) {
      // reorder h0, c0
      T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
      T* reordered_c0_data = reordered_c0->mutable_data<T>(place);
      const T* h0_data = h0->data<T>();
      const T* c0_data = c0->data<T>();
T
tensor-tang 已提交
478 479
      prev_h_data = reordered_h0_data;
      prev_c_data = reordered_c0_data;
T
tensor-tang 已提交
480 481 482 483 484 485 486 487
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        std::memcpy(reordered_c0_data, c0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
        reordered_c0_data += D;
      }
    } else {
T
tensor-tang 已提交
488 489 490 491 492
      // compute without h0, c0
      T* cur_in_data = batched_input_data;
      T* cur_h_out_data = batched_h_out_data;
      T* cur_c_out_data = batched_c_out_data;
      for (int i = 0; i < max_bs; ++i) {
T
tensor-tang 已提交
493 494 495 496 497 498 499
        GET_Ct_NOH0C0(cur_in_data, cur_c_out_data);
        if (use_peepholes) {
          blas.VMUL(D, wc_data + D2, cur_c_out_data, cur_in_data + D);
          blas.VADD(D, cur_in_data + D, cur_in_data + D3, cur_in_data + D3);
        }
        act_gate(D, cur_in_data + D3, cur_in_data + D3);
        GET_Ht(cur_c_out_data, cur_in_data, cur_h_out_data);
T
tensor-tang 已提交
500 501 502 503 504
        cur_in_data += D4;
        cur_c_out_data += D;
        cur_h_out_data += D;
      }
      tstart = 1;
T
tensor-tang 已提交
505 506
      prev_h_data = batched_h_out_data;
      prev_c_data = batched_c_out_data;
T
tensor-tang 已提交
507
    }
T
tensor-tang 已提交
508 509
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
T
tensor-tang 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
    const int offset = tstart * max_bs * D;
    batched_input_data = batched_input_data + offset * 4;
    batched_h_out_data = batched_h_out_data + offset;
    batched_c_out_data = batched_c_out_data + offset;

#define DEFINE_CUR                        \
  T* cur_in_data = batched_input_data;    \
  T* cur_prev_c_data = prev_c_data;       \
  T* cur_c_out_data = batched_c_out_data; \
  T* cur_h_out_data = batched_h_out_data

#define MOVE_ONE_BATCH  \
  cur_in_data += D4;    \
  cur_prev_c_data += D; \
  cur_c_out_data += D;  \
  cur_h_out_data += D

#define MOVE_ONE_STEP                  \
  prev_c_data = batched_c_out_data;    \
  prev_h_data = batched_h_out_data;    \
  batched_c_out_data = cur_c_out_data; \
  batched_h_out_data = cur_h_out_data; \
  batched_input_data = cur_in_data
B
Brian Liu 已提交
533

T
tensor-tang 已提交
534 535 536 537 538 539 540 541 542
    if (use_peepholes) {
      for (int step = tstart; step < max_seq_len; ++step) {
        const int cur_bs = batch_starts[step + 1] - batch_starts[step];
        GEMM_WH_ADDON(cur_bs, prev_h_data, batched_input_data);
        DEFINE_CUR;
        for (int i = 0; i < cur_bs; ++i) {
          COMPUTE_CtHt_PEEPHOLE(cur_in_data, cur_prev_c_data, cur_c_out_data,
                                cur_h_out_data);
          MOVE_ONE_BATCH;
B
Brian Liu 已提交
543
        }
T
tensor-tang 已提交
544 545 546
        MOVE_ONE_STEP;
      }
    } else {
547 548 549 550 551 552 553 554 555 556 557
      // TODO(TJ): unly workaround, clean me
      std::function<void(T*, const T*, T*, T*)> compute_ctht;
      if (platform::jit::MayIUse(platform::jit::avx) &&
          act_gate_str == "sigmoid" && act_cand_str == "tanh" &&
          act_cell_str == "tanh" && D == 8) {
        compute_ctht = math::lstm_compute_ctht<T>;
      } else {
        compute_ctht = [&](T* gates, const T* ct_1, T* ct, T* ht) {
          COMPUTE_CtHt(gates, ct_1, ct, ht);
        };
      }
T
tensor-tang 已提交
558 559 560 561 562
      for (int step = tstart; step < max_seq_len; ++step) {
        const int cur_bs = batch_starts[step + 1] - batch_starts[step];
        GEMM_WH_ADDON(cur_bs, prev_h_data, batched_input_data);
        DEFINE_CUR;
        for (int i = 0; i < cur_bs; ++i) {
563
          compute_ctht(cur_in_data, cur_prev_c_data, cur_c_out_data,
T
tensor-tang 已提交
564 565 566 567
                       cur_h_out_data);
          MOVE_ONE_BATCH;
        }
        MOVE_ONE_STEP;
T
tensor-tang 已提交
568 569
      }
    }
T
tensor-tang 已提交
570 571 572
#undef MOVE_ONE_STEP
#undef MOVE_ONE_BATCH
#undef DEFINE_CUR
T
tensor-tang 已提交
573 574

    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
575 576 577 578
    batched_h_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_h_out, hidden_out);
    batched_c_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_c_out, cell_out);
T
tensor-tang 已提交
579
  }
T
tensor-tang 已提交
580

T
tensor-tang 已提交
581
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
582
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
583 584 585 586 587
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }
T
tensor-tang 已提交
588 589 590

#undef COMPUTE_CtHt_PEEPHOLE
#undef COMPUTE_CtHt
T
tensor-tang 已提交
591 592 593
#undef GET_Ct_NOH0C0
#undef COMPUTE_CtHt_NOH0C0
#undef COMPUTE_CtHt_PEEPHOLE_NOH0C0
T
tensor-tang 已提交
594 595 596 597
#undef GET_Ht
#undef GET_Ct
#undef GEMM_WH_ADDON
#undef INIT_BASE_INPUT_DATAS
T
tensor-tang 已提交
598 599 600
#undef INIT_BASE_SIZES
#undef INIT_BASE_INPUT_OUTPUT
#undef INIT_VEC_FUNC
T
tensor-tang 已提交
601 602 603 604 605 606
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
T
tensor-tang 已提交
607
REGISTER_OPERATOR(fusion_lstm, ops::FusionLSTMOp, ops::FusionLSTMOpMaker,
T
tensor-tang 已提交
608 609
                  paddle::framework::DefaultGradOpDescMaker<true>);

T
tensor-tang 已提交
610 611
REGISTER_OP_CPU_KERNEL(fusion_lstm, ops::FuisonLSTMKernel<float>,
                       ops::FuisonLSTMKernel<double>);