ExpandConvTransLayer.cpp 2.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
W
wangyang59 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yu Yang 已提交
15
#include "ExpandConvTransLayer.h"
W
wangyang59 已提交
16 17 18
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"

19 20 21 22 23
/* The implementation of the convTransLayer is basically a swap of forward and
 * backward of the original convLayer.
 * The variable naming follows the convention of the convLayer.
 * */

W
wangyang59 已提交
24 25 26 27 28
namespace paddle {

REGISTER_LAYER(exconvt, ExpandConvTransLayer);

bool ExpandConvTransLayer::init(const LayerMap &layerMap,
29
                                const ParameterMap &parameterMap) {
W
wangyang59 已提交
30
  /* Initialize the basic convolutional parent class */
31
  ExpandConvBaseLayer::init(layerMap, parameterMap);
W
wangyang59 已提交
32 33 34 35 36 37 38 39 40

  return true;
}

void ExpandConvTransLayer::forward(PassType passType) {
  Layer::forward(passType);

  /* malloc memory for the output_ if necessary */
  int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
41
  resetOutput(batchSize, getOutputSize());
W
wangyang59 已提交
42 43

  MatrixPtr output = nullptr;
44
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
W
wangyang59 已提交
45 46 47
    LayerPtr prevLayer = getPrev(i);
    output = prevLayer->getOutputValue();
    REGISTER_TIMER_INFO("shrinkFwd", getName().c_str());
48
    bpropActs(output, getOutputValue(), i);
W
wangyang59 已提交
49 50 51
  }

  /* add the bias-vector */
52
  if (biases_.get()) {
W
wangyang59 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    if (sharedBiases_) {
      addSharedBias();
    } else {
      addUnsharedBias();
    }
  }

  /* activation */
  forwardActivation();
}

void ExpandConvTransLayer::backward(const UpdateCallback &callback) {
  backwardActivation();

  MatrixPtr imageGrad = getOutputGrad();
  if (biases_ && biases_->getWGrad()) {
    bpropBiases(imageGrad);
    /* Increasing the number of gradient */
    biases_->getParameterPtr()->incUpdate(callback);
  }

74
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
W
wangyang59 已提交
75 76
    /* First, calculate the input layers error */
    for (size_t off = 0; off < imageGrad->getHeight(); off++) {
77
      if (getPrev(i)->getOutputGrad()) {
78 79
        expandFwdOnce(imageGrad, getPrev(i)->getOutputGrad(), i, off);
      }
W
wangyang59 已提交
80 81 82
    }
    if (weights_[i]->getWGrad()) {
      /* Then, calculate the W-gradient for the current layer */
83
      bpropWeights(imageGrad, getPrev(i)->getOutputValue(), i);
W
wangyang59 已提交
84 85 86 87 88 89 90
      /* Increasing the number of gradient */
      weights_[i]->getParameterPtr()->incUpdate(callback);
    }
  }
}

}  // namespace paddle