ConvOpTest.cpp 8.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <memory>
#include "Function.h"
#include "FunctionTest.h"

namespace paddle {

22
enum TestType {
H
hedaoyuan 已提交
23 24 25
  kForwardTest = 0,
  kBackwardInputTest = 1,
  kBackwardFilterTest = 2,
26 27
};

28
template <DeviceType DType1, DeviceType DType2>
29 30 31 32
class ConvolutionTest {
public:
  ConvolutionTest(const std::string& conv1,
                  const std::string& conv2,
33
                  TestType type,
34 35 36 37 38 39 40 41 42 43 44 45
                  std::string algo = "auto") {
    for (size_t batchSize : {1, 32}) {
      for (size_t inputSize : {7, 14, 54}) {
        for (size_t filterSize : {1, 3, 5}) {
          for (size_t inputChannels : {3, 64}) {
            for (size_t outputChannels : {3, 64, 128}) {
              if (inputChannels < outputChannels) break;
              for (size_t stride : {1, 2}) {
                for (size_t padding : {0, 1}) {
                  if (padding >= filterSize) break;
                  size_t outputSize =
                      (inputSize - filterSize + 2 * padding + stride) / stride;
H
hedaoyuan 已提交
46 47 48 49 50 51 52 53 54 55
                  VLOG(3) << " batchSize=" << batchSize
                          << " inputChannels=" << inputChannels
                          << " inputHeight=" << inputSize
                          << " inputWidth=" << inputSize
                          << " outputChannels=" << outputChannels
                          << " filterHeight=" << filterSize
                          << " filterWidth=" << filterSize
                          << " outputHeight=" << outputSize
                          << " outputWidth=" << outputSize
                          << " stride=" << stride << " padding=" << padding;
56

57 58
                  std::vector<size_t> paddings = {padding, padding};
                  std::vector<size_t> strides = {stride, stride};
59 60 61 62 63 64 65 66
                  Compare2Function<DType1, DType2> test(
                      conv1,
                      conv2,
                      FuncConfig()
                          .set("paddings", paddings)
                          .set("strides", strides)
                          .set("groups", (size_t)1)
                          .set("algo", algo));
67

68
                  TensorShape input{
69
                      batchSize, inputChannels, inputSize, inputSize};
70
                  TensorShape filter{
71
                      outputChannels, inputChannels, filterSize, filterSize};
72
                  TensorShape output{
73
                      batchSize, outputChannels, outputSize, outputSize};
74

H
hedaoyuan 已提交
75
                  if (type == kForwardTest) {
76 77 78 79
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
                    test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output));
                    test.run();
H
hedaoyuan 已提交
80
                  } else if (type == kBackwardInputTest) {
81 82
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
H
hedaoyuan 已提交
83
                    test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input), ADD_TO);
84
                    test.run();
H
hedaoyuan 已提交
85
                  } else if (type == kBackwardFilterTest) {
86 87 88 89 90
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
                    test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter));
                    test.run();
                  }
91 92 93 94 95 96 97 98 99 100
                }
              }
            }
          }
        }
      }
    }
  }
};

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
// Mainly used to test cases where the height and width (input, filter)
// are not equal.
template <DeviceType DType1, DeviceType DType2>
class ConvolutionTest2 {
public:
  ConvolutionTest2(const std::string& conv1,
                   const std::string& conv2,
                   TestType type,
                   std::string algo = "auto") {
    for (size_t batchSize : {16}) {
      for (size_t inputHeight : {7, 31}) {
        for (size_t inputWidth : {10, 54}) {
          for (size_t filterHeight : {1, 5}) {
            for (size_t filterWidth : {3, 7}) {
              for (size_t inputChannels : {7}) {
                for (size_t outputChannels : {32}) {
                  size_t stride = 1;
                  size_t padding = 0;
                  size_t outputHeight =
                      (inputHeight - filterHeight + 2 * padding + stride) /
                      stride;
                  size_t outputWidth =
                      (inputWidth - filterWidth + 2 * padding + stride) /
                      stride;
                  VLOG(3) << " batchSize=" << batchSize
                          << " inputChannels=" << inputChannels
                          << " inputHeight=" << inputHeight
                          << " inputWidth=" << inputWidth
                          << " outputChannels=" << outputChannels
                          << " filterHeight=" << filterHeight
                          << " filterWidth=" << filterWidth
                          << " outputHeight=" << outputHeight
                          << " outputWidth=" << outputWidth
                          << " stride=" << stride << " padding=" << padding;

                  std::vector<size_t> paddings = {padding, padding};
                  std::vector<size_t> strides = {stride, stride};
                  Compare2Function<DType1, DType2> test(
                      conv1,
                      conv2,
                      FuncConfig()
                          .set("paddings", paddings)
                          .set("strides", strides)
                          .set("groups", (size_t)1)
                          .set("algo", algo));

                  TensorShape input{
                      batchSize, inputChannels, inputHeight, inputWidth};
                  TensorShape filter{
                      outputChannels, inputChannels, filterHeight, filterWidth};
                  TensorShape output{
                      batchSize, outputChannels, outputHeight, outputWidth};

                  if (type == kForwardTest) {
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
                    test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output));
                    test.run();
                  } else if (type == kBackwardInputTest) {
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
                    test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input), ADD_TO);
                    test.run();
                  } else if (type == kBackwardFilterTest) {
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
                    test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter));
                    test.run();
                  }
                }
              }
            }
          }
        }
      }
    }
  }
};

180 181
TEST(Forward, GEMM) {
  ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU> test(
H
hedaoyuan 已提交
182
      "NaiveConv-CPU", "GemmConv-CPU", kForwardTest);
183 184
  ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU> test2(
      "NaiveConv-CPU", "GemmConv-CPU", kForwardTest);
185 186
}

H
Bug fix  
hedaoyuan 已提交
187
#ifndef PADDLE_ONLY_CPU
188 189
TEST(Forward, GEMM2) {
  ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
H
hedaoyuan 已提交
190
      "GemmConv-CPU", "GemmConv-GPU", kForwardTest);
191 192
  ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
      "GemmConv-CPU", "GemmConv-GPU", kForwardTest);
193 194
}

195 196
TEST(BackwardInput, GEMM) {
  ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
H
hedaoyuan 已提交
197
      "GemmConvGradInput-CPU", "GemmConvGradInput-GPU", kBackwardInputTest);
198 199
  ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
      "GemmConvGradInput-CPU", "GemmConvGradInput-GPU", kBackwardInputTest);
200 201
}

202 203
TEST(BackwardFilter, GEMM) {
  ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
H
hedaoyuan 已提交
204
      "GemmConvGradFilter-CPU", "GemmConvGradFilter-GPU", kBackwardFilterTest);
205 206
  ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
      "GemmConvGradFilter-CPU", "GemmConvGradFilter-GPU", kBackwardFilterTest);
207
}
H
Bug fix  
hedaoyuan 已提交
208
#endif
209 210

}  // namespace paddle