transpose_op.cc 12.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
xzl 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
xzl 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
xzl 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
xzl 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/transpose_op.h"
16
#include <memory>
17
#include <string>
18
#include <vector>
X
xzl 已提交
19

20 21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

X
xzl 已提交
24 25 26 27 28 29 30 31 32
namespace paddle {
namespace operators {

using framework::Tensor;

class TransposeOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

33
  void InferShape(framework::InferShapeContext *ctx) const override {
34 35
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Transpose");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Transpose");
Q
Qiao Longfei 已提交
36 37
    auto x_dims = ctx->GetInputDim("X");
    std::vector<int> axis = ctx->Attrs().Get<std::vector<int>>("axis");
X
xzl 已提交
38
    size_t x_rank = x_dims.size();
X
xzl 已提交
39
    size_t axis_size = axis.size();
X
xzl 已提交
40

X
xzl 已提交
41
    PADDLE_ENFORCE_EQ(x_rank, axis_size,
42 43 44 45 46 47
                      platform::errors::InvalidArgument(
                          "The input tensor's dimension "
                          "should be equal to the axis's size. "
                          "But received input tensor's dimension is %d, "
                          "axis's size is %d",
                          x_rank, axis_size));
48 49 50

    std::vector<int> count(axis_size, 0);
    for (size_t i = 0; i < axis_size; i++) {
51 52 53 54 55 56 57 58 59 60
      PADDLE_ENFORCE_EQ(
          axis[i] < static_cast<int>(axis_size) && ++count[axis[i]] == 1, true,
          platform::errors::InvalidArgument(
              "Each element of Attribute axis should "
              "be a unique value range from 0 to (dims - 1), "
              "where the dims is the axis's size, "
              "unique value means this axis value can appear only once. "
              "But received axis[%d] is %d, axis_size is %d, "
              "count[axis[%d]] is %d",
              i, axis[i], axis_size, i, count[axis[i]]));
X
xzl 已提交
61
    }
X
xzl 已提交
62

X
xzl 已提交
63
    framework::DDim out_dims(x_dims);
64
    for (size_t i = 0; i < axis_size; i++) {
X
xzl 已提交
65
      out_dims[i] = x_dims[axis[i]];
X
xzl 已提交
66
    }
Q
Qiao Longfei 已提交
67
    ctx->SetOutputDim("Out", out_dims);
X
xzl 已提交
68
  }
69 70 71 72 73 74 75 76 77 78 79 80 81 82

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
83 84
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
85
        layout_, library_);
86
  }
X
xzl 已提交
87 88 89 90
};

class TransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
91
  void Make() override {
92
    AddInput(
X
xzl 已提交
93
        "X",
94 95
        "(Tensor) The input tensor, tensors with rank up to 6 are supported.");
    AddOutput("Out", "(Tensor)The output tensor.");
X
xzl 已提交
96 97
    AddAttr<std::vector<int>>(
        "axis",
98 99 100
        "(vector<int>) A list of values, and the size of the list should be "
        "the same with the input tensor rank. This operator permutes the input "
        "tensor's axes according to the values given.");
101 102 103 104 105 106 107 108 109 110
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
111 112 113 114 115 116 117
    /* int8 parameters */
    AddAttr<bool>("use_quantizer",
                  "(bool, default false) "
                  "Set to true for operators that should be quantized and use "
                  "int8 kernel. "
                  "Only used on CPU.")
        .SetDefault(false);
X
xzl 已提交
118
    AddComment(R"DOC(
119 120
Transpose Operator.

121 122
The input tensor will be permuted according to the axes given.
The behavior of this operator is similar to how `numpy.transpose` works.
Y
ying 已提交
123

124 125 126 127 128 129
- suppose the input `X` is a 2-D tensor:
    $$
    X = \begin{pmatrix}
    0 &1 &2 \\
    3 &4 &5
    \end{pmatrix}$$
W
wanghaoshuang 已提交
130

131
    the given `axes` is: $[1, 0]$, and $Y$ = transpose($X$, axis)
W
wanghaoshuang 已提交
132

133
    then the output $Y$ is:
W
wanghaoshuang 已提交
134

135 136 137 138 139 140
    $$
    Y = \begin{pmatrix}
         0 &3 \\
         1 &4  \\
         2 &5
    \end{pmatrix}$$
W
wanghaoshuang 已提交
141

142
- Given a input tensor with shape $(N, C, H, W)$ and the `axes` is
143
$[0, 2, 3, 1]$, then shape of the output tensor will be: $(N, H, W, C)$.
144

X
xzl 已提交
145 146 147 148 149 150 151 152
)DOC");
  }
};

class TransposeOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

153
  void InferShape(framework::InferShapeContext *ctx) const override {
154 155 156
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "TransposeOpGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "TransposeOpGrad");
Q
Qiao Longfei 已提交
157 158 159 160 161
    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    }
X
xzl 已提交
162
  }
163 164 165 166 167 168 169 170 171 172 173 174 175 176

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
177 178 179
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace(), layout_, library_);
180
  }
X
xzl 已提交
181 182
};

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
// FIXME(zcd): transpose2 adds an intermediate output(XShape) based on
// transpose, the XShape is used to carry the shape and lod of X which
// will be used in transpose_grad, in this way, the framework can reuse
// the memory of X immediately the transpose2_op is finished.
// Considering compatibility issues, we could not fix transpose2_op
class Transpose2Op : public TransposeOp {
 public:
  Transpose2Op(const std::string &type,
               const framework::VariableNameMap &inputs,
               const framework::VariableNameMap &outputs,
               const framework::AttributeMap &attrs)
      : TransposeOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    TransposeOp::InferShape(ctx);
198
    OP_INOUT_CHECK(ctx->HasOutput("XShape"), "Output", "XShape", "Transpose2");
199 200 201 202 203 204 205 206 207 208 209 210 211
    const auto &in_dims = ctx->GetInputDim("X");
    std::vector<int64_t> x_shape_dim(in_dims.size() + 1);
    x_shape_dim[0] = 0;
    for (int i = 0; i < in_dims.size(); ++i) {
      x_shape_dim[i + 1] = in_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(x_shape_dim));
    ctx->ShareLoD("X", /*->*/ "XShape");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
212 213
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
214 215
    int customized_type_value =
        framework::OpKernelType::kDefaultCustomizedTypeValue;
216 217 218 219 220 221
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
222 223 224 225 226 227
      using framework::proto::VarType;
      auto input_data_type = ctx.Input<Tensor>("X")->type();
      customized_type_value = (input_data_type == VarType::INT8 ||
                               input_data_type == VarType::UINT8)
                                  ? kTransposeMKLDNNINT8
                                  : kTransposeMKLDNNFP32;
228 229
    }
#endif
230 231
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
232
        layout_, library_, customized_type_value);
233 234 235 236 237 238 239 240 241 242 243
  }
};

class Transpose2OpMaker : public TransposeOpMaker {
 public:
  void Make() override {
    TransposeOpMaker::Make();
    AddOutput("XShape", "(Tensor)The output tensor.").AsIntermediate();
  }
};

H
hong 已提交
244 245
template <typename T>
class Transpose2GradMaker : public framework::SingleGradOpMaker<T> {
246
 public:
H
hong 已提交
247
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
248

249
  void Apply(GradOpPtr<T> grad_op) const override {
250
    grad_op->SetType("transpose2_grad");
H
hong 已提交
251 252 253 254
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
255 256 257 258 259 260 261 262
  }
};

class Transpose2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
263 264 265 266
    OP_INOUT_CHECK(ctx->HasInput("XShape"), "Input", "XShape",
                   "Transpose2OpGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "Transpose2OpGrad");
267 268 269 270 271 272 273 274 275 276 277 278
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      auto xshape_dim = ctx->GetInputDim("XShape");
      auto x_shape_dim =
          framework::slice_ddim(xshape_dim, 1, xshape_dim.size());
      ctx->SetOutputDim(framework::GradVarName("X"), x_shape_dim);
      ctx->ShareLoD("XShape", framework::GradVarName("X"));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
279 280 281 282 283 284 285 286 287 288
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
289 290 291
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace(), layout_, library_);
292 293 294
  }
};

X
xzl 已提交
295 296 297 298
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
299 300 301 302
REGISTER_OPERATOR(
    transpose, ops::TransposeOp, ops::TransposeOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
303
REGISTER_OPERATOR(transpose_grad, ops::TransposeOpGrad);
304

Q
QI JUN 已提交
305
REGISTER_OP_CPU_KERNEL(
P
phlrain 已提交
306 307
    transpose, ops::TransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TransposeKernel<paddle::platform::CPUDeviceContext, double>);
X
xzl 已提交
308 309
REGISTER_OP_CPU_KERNEL(
    transpose_grad,
P
phlrain 已提交
310 311
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, double>);
312 313

REGISTER_OPERATOR(transpose2, ops::Transpose2Op, ops::Transpose2OpMaker,
H
hong 已提交
314 315
                  ops::Transpose2GradMaker<paddle::framework::OpDesc>,
                  ops::Transpose2GradMaker<paddle::imperative::OpBase>);
316 317 318
REGISTER_OPERATOR(transpose2_grad, ops::Transpose2OpGrad);

REGISTER_OP_CPU_KERNEL(
P
phlrain 已提交
319
    transpose2, ops::TransposeKernel<paddle::platform::CPUDeviceContext, float>,
320 321
    ops::TransposeKernel<paddle::platform::CPUDeviceContext, int32_t>,
    ops::TransposeKernel<paddle::platform::CPUDeviceContext, int64_t>,
P
phlrain 已提交
322
    ops::TransposeKernel<paddle::platform::CPUDeviceContext, double>);
323 324
REGISTER_OP_CPU_KERNEL(
    transpose2_grad,
325 326
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, int32_t>,
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
P
phlrain 已提交
327 328
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, double>);