activation_op.h 59.7 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
12 13

#pragma once
D
dzhwinter 已提交
14
#include <glog/logging.h>
Y
Yihua Xu 已提交
15
#include <algorithm>
16
#include <memory>
D
dzhwinter 已提交
17 18
#include <string>
#include <unordered_set>
19 20
#include <utility>
#include <vector>
21

C
Clementine 已提交
22 23 24 25 26
#include <cmath>
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif

Y
Yi Wang 已提交
27 28 29
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
Y
Yihua Xu 已提交
30
#include "paddle/fluid/operators/math/blas.h"
31
#include "paddle/fluid/platform/float16.h"
Q
qijun 已提交
32

33 34 35 36
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

Q
qijun 已提交
37 38 39
namespace paddle {
namespace operators {

40 41 42 43 44 45 46 47 48 49 50 51
enum ActBwdOpFwdDeps {
  kNoDeps = 0x00,  // Do not need any forward input/output
  kDepX = 0x01,    // Only need forward input X
  kDepOut = 0x02,  // Only need forward output Out

  // Never add kDepXOut, because Out can be always calculated
  // by forward input X in backward part.
  // FIXME(zjl): but in MKLDNN abs, X and Out are all needed...
  // Developers should not rely on this enum value!
  kDepXOut = 0x03
};

C
chengduo 已提交
52 53 54 55 56 57
/* The following operator can be used to process SelectedRows, because the
 * output of those operator for zero is zero too.
 */
static std::unordered_set<std::string> CanBeUsedBySelectedRows = {
    "abs", "abs_grad", "square", "square_grad", "sqrt", "sqrt_grad"};

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
inline void ExtractActivationTensor(const framework::ExecutionContext& context,
                                    const framework::Tensor** X,
                                    framework::Tensor** Out) {
  auto x_var = context.InputVar("X");
  auto out_var = context.OutputVar("Out");
  PADDLE_ENFORCE(x_var != nullptr,
                 "Cannot get input Variable X, variable name = %s",
                 context.op().Input("X"));
  PADDLE_ENFORCE(out_var != nullptr,
                 "Cannot get output Variable Out, variable name = %s",
                 context.op().Output("Out"));
  if (CanBeUsedBySelectedRows.count(context.op().Type())) {
    *X = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var);
    *Out = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
        out_var);
  } else {
    *X = context.Input<framework::Tensor>("X");
    *Out = context.Output<framework::Tensor>("Out");
  }

  PADDLE_ENFORCE(*Out != nullptr,
                 "Cannot get output tensor Out, variable name = %s",
                 context.op().Output("Out"));
}

83
template <ActBwdOpFwdDeps kDepValue>
84 85 86 87 88 89
inline void ExtractActivationGradTensor(
    const framework::ExecutionContext& context, const framework::Tensor** X,
    const framework::Tensor** Out, const framework::Tensor** dOut,
    framework::Tensor** dX) {
  auto out_grad_var = context.InputVar(framework::GradVarName("Out"));
  auto x_grad_var = context.OutputVar(framework::GradVarName("X"));
90 91 92 93 94 95 96 97
  const framework::Variable* out_var = nullptr;

  if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
    out_var = context.InputVar("Out");
    PADDLE_ENFORCE(out_var != nullptr,
                   "Cannot get input Variable Out, variable name = %s",
                   context.op().Input("Out"));
  }
98 99 100 101 102 103 104 105 106 107 108 109 110 111
  PADDLE_ENFORCE(out_grad_var != nullptr,
                 "Cannot get input Variable %s, variable name = %s",
                 framework::GradVarName("Out"),
                 context.op().Input(framework::GradVarName("Out")));
  PADDLE_ENFORCE(x_grad_var != nullptr,
                 "Cannot get output Variable %s, variable name = %s",
                 framework::GradVarName("X"),
                 context.op().Output(framework::GradVarName("X")));

  if (CanBeUsedBySelectedRows.count(context.op().Type())) {
    *dOut = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(
        *out_grad_var);
    *dX = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
        x_grad_var);
112 113 114 115 116 117 118 119

    if (out_var) {
      *Out =
          paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*out_var);
    } else {
      *Out = *dOut;  // fake out
    }

120 121 122 123
  } else {
    *Out = context.Input<framework::Tensor>("Out");
    *dOut = context.Input<framework::Tensor>(framework::GradVarName("Out"));
    *dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
124 125 126 127 128 129

    if (out_var) {
      *Out = &(out_var->Get<framework::LoDTensor>());
    } else {
      *Out = *dOut;  // fake out
    }
130
  }
131

132 133 134 135 136
  PADDLE_ENFORCE(*dX != nullptr,
                 "Cannot get output tensor %s, variable name = %s",
                 framework::GradVarName("X"),
                 context.op().Output(framework::GradVarName("X")));

137
  if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
C
chengduo 已提交
138 139
    auto x_var = context.InputVar("X");
    PADDLE_ENFORCE(x_var != nullptr,
140
                   "Cannot get input tensor X, variable name = %s",
C
chengduo 已提交
141 142
                   context.op().Input("X"));
    if (CanBeUsedBySelectedRows.count(context.op().Type())) {
143
      *X = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var);
C
chengduo 已提交
144
    } else {
145
      *X = context.Input<framework::Tensor>("X");
C
chengduo 已提交
146
    }
147 148 149 150 151
  } else {
    VLOG(10) << " Inplace activation of Op : " << context.op().Type();
    *X = *dX;
  }
}
C
chengduo 已提交
152

153 154 155 156 157
template <typename DeviceContext, typename Functor>
class ActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
C
chengduo 已提交
158

159 160 161 162
  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor* X = nullptr;
    framework::Tensor* Out = nullptr;
    ExtractActivationTensor(context, &X, &Out);
C
chengduo 已提交
163
    Out->mutable_data<T>(context.GetPlace());
164 165 166

    auto x = framework::EigenVector<T>::Flatten(detail::Ref(X));
    auto out = framework::EigenVector<T>::Flatten(detail::Ref(Out));
Q
QI JUN 已提交
167 168
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
169
    Functor functor;
170 171 172 173 174

    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
F
fengjiayi 已提交
175
    functor(*place, x, out);
Q
qijun 已提交
176 177 178
  }
};

Q
QI JUN 已提交
179
template <typename DeviceContext, typename Functor>
180 181
class ActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
Q
qijun 已提交
182
 public:
183
  using T = typename Functor::ELEMENT_TYPE;
Q
qijun 已提交
184
  void Compute(const framework::ExecutionContext& context) const override {
185 186 187
    const framework::Tensor *X, *Out, *dOut;
    framework::Tensor* dX = nullptr;
    X = Out = dOut = nullptr;
188 189
    ExtractActivationGradTensor<Functor::FwdDeps()>(context, &X, &Out, &dOut,
                                                    &dX);
Q
qijun 已提交
190
    dX->mutable_data<T>(context.GetPlace());
191 192 193 194
    auto dout = framework::EigenVector<T>::Flatten(detail::Ref(dOut));
    auto out = framework::EigenVector<T>::Flatten(detail::Ref(Out));
    auto dx = framework::EigenVector<T>::Flatten(detail::Ref(dX));
    auto x = framework::EigenVector<T>::Flatten(detail::Ref(X));
Q
QI JUN 已提交
195 196
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
197
    Functor functor;
198 199 200 201
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
202
    functor(*place, x, out, dout, dx);
Q
qijun 已提交
203 204 205
  }
};

206 207 208 209 210 211 212
template <typename T>
struct BaseActivationFunctor {
  using ELEMENT_TYPE = T;

  using AttrPair = std::vector<std::pair<const char*, float*>>;

  AttrPair GetAttrs() { return AttrPair(); }
D
dzhwinter 已提交
213 214 215 216 217 218 219 220

  /* NOTE(*): Output reuse X memory if X is not dependented by its Gradient.
     For example, sigmoid op's gradient didn't involve x, so its output can
     reuse
     input memory. But abs op's gradient use x, it can not be inplaced.
     gradient did use x.
   */
  bool Inplace() const { return false; }
221 222
};

223
// sigmoid(x) = 1 / (1 + exp(-x))
Q
qijun 已提交
224
template <typename T>
225
struct SigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
226 227 228
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / (static_cast<T>(1) + (-x).exp());
Q
qijun 已提交
229 230 231
  }
};

232
template <typename T>
233
struct SigmoidGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
234 235 236 237
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out * (static_cast<T>(1) - out);
Q
qijun 已提交
238
  }
239 240

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
241 242
};

243 244 245 246
// Originally: logsigmoid(x) = -log (1 + exp(-x))
// For numerical stability, we can use the log-sum-exp trick:
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// We can rewrite the above equation as:
F
fengjiayi 已提交
247
// out = -log( exp(0) + exp(-x)) [since exp(0) = 1]
248 249 250 251 252 253 254 255 256 257
//   = -log( exp(max(-x, 0) - max(-x, 0)) + exp(-x + max(-x, 0) - max(-x, 0)))
//   = -log( exp(max(-x, 0)) * exp(-max(-x, 0)) - exp(max(-x, 0)) * exp(-x -
//           max(-x, 0)))
//   = -log( exp(max(-x, 0)) * (exp(-max(-x, 0)) + exp(-x - max(-x, 0))))
//   = -log( exp(max(-x, 0)) - log(exp(-max(-x, 0)) + exp(-x - max(-x, 0)))
//
// Hence, logsigmoid(x) = - (max(-x, 0) + log(exp(-max(-x, 0))
// + exp(-x - max(-x, 0))))
template <typename T>
struct LogSigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
258 259
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
260
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
F
fengjiayi 已提交
261
    out.device(d) = -temp - (((-temp).exp() + (-x - temp).exp()).log());
262 263 264 265 266 267 268 269
  }
};

// Originally: f' = exp(-x) / (1 + exp(-x))
// For numerical stability: f' = exp(-x - max(-x, 0)) / (exp(-max(-x, 0)) +
// exp(-x - max(-x, 0)))
template <typename T>
struct LogSigmoidGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
270 271 272
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
273 274
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
    dx.device(d) =
F
fengjiayi 已提交
275
        dout * ((-x - temp).exp() / ((-temp).exp() + (-x - temp).exp()));
276
  }
277 278

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
279 280
};

Q
qijun 已提交
281
// exp(x) = e^x
282 283
template <typename T>
struct ExpFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
284 285 286
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.exp();
Q
qijun 已提交
287 288 289
  }
};

290 291
template <typename T>
struct ExpGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
292 293 294 295
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out;
Q
qijun 已提交
296
  }
297 298

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
299 300
};

Q
qijun 已提交
301
// relu(x) = max(x, 0)
Q
qijun 已提交
302
template <typename T>
303
struct ReluFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
304 305 306
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(0));
Q
qijun 已提交
307 308
  }
};
Q
qijun 已提交
309

Q
qijun 已提交
310
template <typename T>
311
struct ReluGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
312 313 314
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
315
    dx.device(d) = dout * (out > static_cast<T>(0)).template cast<T>();
Q
qijun 已提交
316
  }
317 318

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
319
};
Q
qijun 已提交
320

C
Clementine 已提交
321 322 323 324 325
// gelu(x) = 0.5 * x *  (1 + erf(x / sqrt(2)))
template <typename T>
struct GeluFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yihua Xu 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
// Because the execute or device context can not be deliver here, it keep the
// marco for NVCC.
#if defined(PADDLE_WITH_MKLML) && !defined(_WIN32) && !defined(__APPLE__) && \
    !defined(__OSX__) && !defined(PADDLE_WITH_CUDA)
    auto x_data = x.data();
    auto out_data = out.data();
    int n = std::min(x.size(), out.size());

    std::memset(out_data, 0, n * sizeof(T));
    math::CBlas<T>::AXPY(n, static_cast<T>(M_SQRT1_2), x_data, 1, out_data, 1);
    math::CBlas<T>::VMERF(n, out_data, out_data, VML_LA);
    for (int i = 0; i < n; i++) {
      out_data[i] += static_cast<T>(1);
    }
    math::CBlas<T>::VMUL(n, x_data, out_data, out_data);
    for (int i = 0; i < n; i++) {
      out_data[i] *= static_cast<T>(0.5);
    }
#else
345
    auto temp = (x * static_cast<T>(M_SQRT1_2)).erf();
C
Clementine 已提交
346
    out.device(d) = x * static_cast<T>(0.5) * (static_cast<T>(1) + temp);
Y
Yihua Xu 已提交
347
#endif
C
Clementine 已提交
348 349 350
  }
};

A
Adam 已提交
351 352
// gelu_grad(x) = dout * (0.5 * (1 + erf(x / sqrt(2))) + 0.5 * 2 / sqrt(pi) /
// sqrt(2) * x * exp (-0.5 * x^2))
C
Clementine 已提交
353 354 355 356 357
template <typename T>
struct GeluGradFunctor : BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
358 359 360 361
#if defined(PADDLE_WITH_MKLML) && !defined(_WIN32) && !defined(__APPLE__) && \
    !defined(__OSX__) && !defined(PADDLE_WITH_CUDA)
    auto x_data = x.data();
    auto dx_data = dx.data();
A
Adam 已提交
362
    auto dout_data = dout.data();
363 364
    int n = std::min(x.size(), dx.size());

A
Adam 已提交
365 366
    auto first = static_cast<T*>(std::malloc(n * sizeof(T)));
    std::memset(first, 0, n * sizeof(T));
367 368 369
    auto second = static_cast<T*>(std::malloc(n * sizeof(T)));
    std::memset(second, 0, n * sizeof(T));

A
Adam 已提交
370 371 372
    // first = (0.5 * (1 + erf(x / sqrt(2))))
    math::CBlas<T>::AXPY(n, static_cast<T>(M_SQRT1_2), x_data, 1, first, 1);
    math::CBlas<T>::VMERF(n, first, first, VML_LA);
373
    for (int i = 0; i < n; i++) {
A
Adam 已提交
374
      first[i] += static_cast<T>(1);
375
    }
A
Adam 已提交
376 377 378 379 380
    math::CBlas<T>::SCAL(n, static_cast<T>(0.5), first, 1);

    // second = (0.5 * 2/sqrt(pi) * 1/sqrt(2) * x * exp(-0.5 * x^2))
    math::CBlas<T>::VSQUARE(n, x_data, second);
    math::CBlas<T>::SCAL(n, -static_cast<T>(0.5), second, 1);
381 382
    math::CBlas<T>::VEXP(n, second, second);
    math::CBlas<T>::VMUL(n, x_data, second, second);
A
Adam 已提交
383 384
    math::CBlas<T>::SCAL(n, static_cast<T>(0.5 * M_2_SQRTPI * M_SQRT1_2),
                         second, 1);
385

A
Adam 已提交
386 387 388
    // dx = dout * (first + second);
    math::CBlas<T>::VADD(n, first, second, first);
    math::CBlas<T>::VMUL(n, dout_data, first, dx_data);
389

A
Adam 已提交
390
    std::free(first);
391 392
    std::free(second);
#else
393 394 395 396 397 398
    auto first = static_cast<T>(0.5) *
                 (static_cast<T>(1) + ((x * static_cast<T>(M_SQRT1_2)).erf()));

    auto second = static_cast<T>(0.5 * M_2_SQRTPI * M_SQRT1_2) * x *
                  (-static_cast<T>(0.5) * x.square()).exp();
    dx.device(d) = dout * (first + second);
399
#endif
C
Clementine 已提交
400
  }
401 402

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
C
Clementine 已提交
403 404
};

405
// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
406 407
template <typename T>
struct TanhFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
408 409 410
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.tanh();
Q
qijun 已提交
411 412 413 414
  }
};

template <typename T>
415
struct TanhGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
416 417 418 419
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) - out * out);
Q
qijun 已提交
420
  }
421 422

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
423 424
};

K
Kavya Srinet 已提交
425 426 427 428
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct TanhShrinkFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
429 430 431
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x - x.tanh();
K
Kavya Srinet 已提交
432 433 434 435 436
  }
};

template <typename T>
struct TanhShrinkGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
437 438 439 440
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (x.tanh() * x.tanh());
K
Kavya Srinet 已提交
441
  }
442 443

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
K
Kavya Srinet 已提交
444 445
};

446 447 448 449 450 451 452 453 454
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct HardShrinkFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
455 456
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Z
Zeng Jinle 已提交
457 458
    auto temp1 = (x < static_cast<T>(threshold * -1)).template cast<T>();
    auto temp2 = (x > static_cast<T>(threshold)).template cast<T>();
F
fengjiayi 已提交
459
    out.device(d) = x * (temp1 + temp2);
460 461 462 463 464 465 466 467 468 469 470
  }
};

template <typename T>
struct HardShrinkGradFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
471 472 473
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Z
Zeng Jinle 已提交
474 475
    auto temp1 = (x < static_cast<T>(threshold * -1)).template cast<T>();
    auto temp2 = (x > static_cast<T>(threshold)).template cast<T>();
F
fengjiayi 已提交
476
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
477
  }
478 479

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
480 481
};

K
Kexin Zhao 已提交
482
// softshrink(x) = x - lambda, if x > lambda; x + lambda, if x < -lambda; 0
483 484 485 486 487 488 489 490
// otherwise
template <typename T>
struct SoftShrinkFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }

F
fengjiayi 已提交
491 492
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
493
    auto lambdaT = static_cast<T>(lambda);
Z
Zeng Jinle 已提交
494 495
    auto temp1 = (x > lambdaT).template cast<T>();
    auto temp2 = (x < -lambdaT).template cast<T>();
F
fengjiayi 已提交
496
    out.device(d) = temp1 * (x - lambdaT) + temp2 * (x + lambdaT);
497 498 499 500 501 502 503 504 505
  }
};

template <typename T>
struct SoftShrinkGradFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }
F
fengjiayi 已提交
506 507 508
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
509
    auto lambdaT = static_cast<T>(lambda);
Z
Zeng Jinle 已提交
510 511
    auto temp1 = (x > lambdaT).template cast<T>();
    auto temp2 = (x < -lambdaT).template cast<T>();
F
fengjiayi 已提交
512
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
513
  }
514 515

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
516 517
};

Q
qijun 已提交
518
// sqrt(x) = x^(1/2)
519 520
template <typename T>
struct SqrtFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
521 522 523
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.sqrt();
Q
qijun 已提交
524 525 526 527
  }
};

template <typename T>
528
struct SqrtGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
529 530 531
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
C
chengduo 已提交
532
    dx.device(d) = static_cast<T>(0.5) * dout / out;
Q
qijun 已提交
533
  }
534 535

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
536 537
};

Z
zhoukunsheng 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551
// rsqrt(x) = x^(-1/2)
template <typename T>
struct RsqrtFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.rsqrt();
  }
};

template <typename T>
struct RsqrtGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
552
    dx.device(d) = static_cast<T>(-0.5) * dout * out * out * out;
Z
zhoukunsheng 已提交
553
  }
Z
zhoukunsheng 已提交
554 555

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Z
zhoukunsheng 已提交
556 557
};

D
dzhwinter 已提交
558 559 560
// ceil(x) = ceiling(x)
template <typename T>
struct CeilFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
561 562 563
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.ceil();
D
dzhwinter 已提交
564 565 566 567 568
  }
};

template <typename T>
struct ZeroGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
569 570 571
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Z
Zeng Jinle 已提交
572
    dx.device(d) = static_cast<T>(0) * out;
D
dzhwinter 已提交
573
  }
574 575

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kNoDeps; }
D
dzhwinter 已提交
576 577 578 579 580
};

// floor(x) = flooring(x)
template <typename T>
struct FloorFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
581 582
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Q
Qiao Longfei 已提交
583
    out.device(d) = x.floor();
D
dzhwinter 已提交
584 585 586
  }
};

C
add cos  
chengduoZH 已提交
587 588 589 590 591
template <typename T>
struct Sine {
  HOSTDEVICE T operator()(const T& val) const { return sin(val); }
};

592 593 594 595 596 597 598
template <>
struct Sine<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(sin(static_cast<float>(val)));
  }
};

C
add cos  
chengduoZH 已提交
599 600 601 602 603
template <typename T>
struct Cosine {
  HOSTDEVICE T operator()(const T& val) const { return cos(val); }
};

604 605 606 607 608 609 610
template <>
struct Cosine<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(cos(static_cast<float>(val)));
  }
};

C
add cos  
chengduoZH 已提交
611 612 613 614 615 616 617 618
// cosine'(x) = -sin(x)
template <typename T>
struct CosGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = -dout * x.unaryExpr(Sine<T>());
  }
619 620

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
C
add cos  
chengduoZH 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
};

// cosine(x) = cos(x)
template <typename T>
struct CosFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Cosine<T>());
  }
};

// sine'(x) = cos(x)
template <typename T>
struct SinGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * x.unaryExpr(Cosine<T>());
  }
640 641

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
C
add cos  
chengduoZH 已提交
642 643 644 645 646 647 648 649 650 651 652
};

// sine(x) = sin(x)
template <typename T>
struct SinFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Sine<T>());
  }
};

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
template <typename T>
struct Acos {
  HOSTDEVICE T operator()(const T& val) const { return acos(val); }
};

template <>
struct Acos<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(acos(static_cast<float>(val)));
  }
};

// Acos(x) = acos(x)
template <typename T>
struct AcosFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Acos<T>());
  }
};

// acos'(x) = -1/sqrt(1-x^2)
template <typename T>
struct AcosGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) =
        -dout * static_cast<T>(1) / (static_cast<T>(1) - x.square()).sqrt();
  }
683 684

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
};

template <typename T>
struct Asin {
  HOSTDEVICE T operator()(const T& val) const { return asin(val); }
};

template <>
struct Asin<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(asin(static_cast<float>(val)));
  }
};

// Asin(x) = asin(x)
template <typename T>
struct AsinFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Asin<T>());
  }
};

// asin'(x) = 1/sqrt(1-x^2)
template <typename T>
struct AsinGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) =
        dout * static_cast<T>(1) / (static_cast<T>(1) - x.square()).sqrt();
  }
717 718

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
};

template <typename T>
struct Atan {
  HOSTDEVICE T operator()(const T& val) const { return atan(val); }
};

template <>
struct Atan<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(atan(static_cast<float>(val)));
  }
};

// Atan(x) = atan(x)
template <typename T>
struct AtanFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Atan<T>());
  }
};

// atan'(x) =  1 / (1 + x^2)
template <typename T>
struct AtanGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(1) / (static_cast<T>(1) + x.square());
  }
750 751

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
752 753
};

D
dzhwinter 已提交
754 755 756
// round(x) = [x]
template <typename T>
struct RoundFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
757 758 759
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.round();
D
dzhwinter 已提交
760 761 762
  }
};

Q
qijun 已提交
763
// abs(x) = |x|
764 765
template <typename T>
struct AbsFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
766 767 768
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.abs();
Q
qijun 已提交
769 770 771
  }
};

772 773
template <typename T>
struct AbsGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
774 775 776 777
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * x.sign();
778
  }
779 780

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepXOut; }
781 782
};

Q
qijun 已提交
783 784
// reciprocal(x) = 1 / x
template <typename T>
785
struct ReciprocalFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
786 787 788
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / x;
Q
qijun 已提交
789 790 791
  }
};

792
template <typename T>
793
struct ReciprocalGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
794 795 796 797
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(-1) * out * out;
Q
qijun 已提交
798
  }
799 800

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
801 802 803
};

// log(x) = natural logarithm of x
804 805
template <typename T>
struct LogFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
806 807 808
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.log();
Q
qijun 已提交
809 810 811
  }
};

812
template <typename T>
813
struct LogGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
814 815 816 817
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) / x);
Q
qijun 已提交
818
  }
819 820

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
Q
qijun 已提交
821 822 823
};

// square(x) = x^2
824 825
template <typename T>
struct SquareFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
826 827 828
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.square();
Q
qijun 已提交
829
  }
830
};
Q
qijun 已提交
831

832
template <typename T>
833
struct SquareGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
834 835 836 837
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(2) * x;
838
  }
839 840

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
841 842
};

843 844 845 846 847 848 849 850 851 852
template <typename T>
struct BReluFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;

  // NOTE: Explicit hides the `BaseActivationFunctor<T>::GetAttrs`
  // not polymorphism for speed.
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
853

F
fengjiayi 已提交
854 855 856
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
857
        x.cwiseMax(static_cast<T>(t_min)).cwiseMin(static_cast<T>(t_max));
858 859 860
  }
};

861 862 863 864 865 866 867
template <typename T>
struct BReluGradFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
F
fengjiayi 已提交
868 869 870 871
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
Y
Yu Yang 已提交
872 873
                   ((x > static_cast<T>(t_min)) * (x < static_cast<T>(t_max)))
                       .template cast<T>();
874
  }
875 876

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
877 878
};

879 880 881 882 883 884 885 886 887
// relu6(x) = min(max(0, x), 6)
template <typename T>
struct Relu6Functor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
888 889 890
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
891
        x.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(threshold));
892 893 894 895 896 897 898 899 900
  }
};

template <typename T>
struct Relu6GradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
901 902 903
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
904 905 906 907
    dx.device(d) =
        dout *
        ((out > static_cast<T>(0)) * (out < static_cast<T>(threshold)))
            .template cast<T>();
908
  }
909 910

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
911 912
};

H
huangjun12 已提交
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
// HardSwish = min(max(0, x+3), 6) * x / 6
template <typename T>
struct HardSwishFunctor : public BaseActivationFunctor<T> {
  float threshold;
  float scale;
  float offset;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}, {"scale", &scale}, {"offset", &offset}};
  }

  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = (x + static_cast<T>(offset))
                        .cwiseMax(static_cast<T>(0))
                        .cwiseMin(static_cast<T>(threshold)) *
                    x / static_cast<T>(scale);
  }
};

template <typename T>
struct HardSwishGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  float scale;
  float offset;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}, {"scale", &scale}, {"offset", &offset}};
  }
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    auto tmp = ((x + static_cast<T>(offset)) < static_cast<T>(threshold))
                   .template cast<T>();
    dx.device(d) =
        dout *
        (((x + static_cast<T>(offset)) > static_cast<T>(0)).template cast<T>() *
             (static_cast<T>(2) * x + static_cast<T>(offset)) /
             static_cast<T>(scale) * tmp +
         static_cast<T>(1) * (static_cast<T>(1) - tmp));
  }

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

K
kexinzhao 已提交
958 959 960 961 962 963 964
// softplus(x) = log(1 + exp(x))
// When x is a very large positive number, exp(x) may explode to inf,
// Using trick below for numerical stability
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// Then: softplus(x) = max(x, 0) + log(exp(-max(x, 0)) + exp(x - max(x, 0)))
template <typename T>
struct SoftplusFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
965 966
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
K
kexinzhao 已提交
967
    auto temp = x.cwiseMax(static_cast<T>(0));  // temp = max(x, 0)
F
fengjiayi 已提交
968
    out.device(d) = temp + (((-temp).exp() + (x - temp).exp()).log());
K
kexinzhao 已提交
969 970 971 972 973 974 975 976 977
  }
};

// d(softplus(x))/dx = exp(x) / (1 + exp(x))
// For numerical stability:
// d(softplus(x))/dx = exp(x - max(x, 0)) / (exp(-max(x, 0)) +
// exp(x - max(x, 0)))
template <typename T>
struct SoftplusGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
978 979 980
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
K
kexinzhao 已提交
981
    auto temp = x.cwiseMax(static_cast<T>(0));  // temp = max(x, 0)
F
fengjiayi 已提交
982 983
    dx.device(d) =
        dout * ((x - temp).exp() / ((-temp).exp() + (x - temp).exp()));
K
kexinzhao 已提交
984
  }
985 986

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
K
kexinzhao 已提交
987 988
};

989 990
// softsign(x) = x / (1 + |x|)
template <typename T>
991
struct SoftsignFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
992 993 994
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
    out.device(d) = x / (static_cast<T>(1) + x.abs());
995 996 997 998 999 1000
  }
};

// d(softsign(x))/dx = 1 / (1 + |x|)^2
// Taken from https://en.wikipedia.org/wiki/Activation_function
template <typename T>
1001
struct SoftsignGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
1002 1003 1004
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
1005
    dx.device(d) =
F
fengjiayi 已提交
1006
        dout * (static_cast<T>(1) / (static_cast<T>(1) + x.abs()).square());
1007
  }
1008 1009

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1010 1011
};

1012 1013 1014 1015 1016 1017
template <typename T>
struct SoftReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
1018

F
fengjiayi 已提交
1019 1020
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
1021 1022
    auto tmp = static_cast<T>(threshold);
    auto temp = x.cwiseMax(-tmp).cwiseMin(tmp);
F
fengjiayi 已提交
1023
    out.device(d) = (static_cast<T>(1) + temp.exp()).log();
1024 1025 1026
  }
};

1027 1028 1029 1030 1031 1032
template <typename T>
struct SoftReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
1033 1034 1035
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
1036
    auto tmp = static_cast<T>(threshold);
Z
Zeng Jinle 已提交
1037
    auto temp = ((out > -tmp) * (out < tmp)).template cast<T>();
F
fengjiayi 已提交
1038
    dx.device(d) = dout * (static_cast<T>(1) - (-out).exp()) * temp;
1039
  }
1040 1041

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
1042 1043
};

K
Kavya Srinet 已提交
1044 1045 1046 1047 1048 1049
template <typename T>
struct LeakyReluFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
1050

F
fengjiayi 已提交
1051 1052 1053
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(alpha) * x);
1054 1055 1056
  }
};

K
Kavya Srinet 已提交
1057 1058 1059 1060 1061 1062
template <typename T>
struct LeakyReluGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
F
fengjiayi 已提交
1063 1064 1065
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Z
Zeng Jinle 已提交
1066
    auto temp1 =
1067 1068
        static_cast<T>(alpha) * (out <= static_cast<T>(0)).template cast<T>();
    auto temp2 = (out > static_cast<T>(0)).template cast<T>();
F
fengjiayi 已提交
1069
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
1070
  }
1071

Z
Zeng Jinle 已提交
1072
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
1073 1074
};

1075 1076 1077 1078 1079 1080
template <typename T>
struct ELUFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
1081

F
fengjiayi 已提交
1082 1083 1084 1085 1086
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(0)) +
                    (static_cast<T>(alpha) * (x.exp() - static_cast<T>(1)))
                        .cwiseMin(static_cast<T>(0));
1087 1088 1089
  }
};

1090 1091 1092 1093 1094 1095
template <typename T>
struct ELUGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
F
fengjiayi 已提交
1096 1097 1098 1099
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (x > static_cast<T>(0)).template cast<T>() +
1100
                   dout * static_cast<T>(alpha) * x.exp() *
Y
Yu Yang 已提交
1101
                       (x < static_cast<T>(0)).template cast<T>();
1102
  }
1103 1104

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1105 1106
};

Q
QI JUN 已提交
1107
// FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/5198
1108 1109 1110 1111 1112 1113
template <typename T>
struct PowFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
1114 1115 1116
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.pow(static_cast<T>(factor));
1117 1118 1119
  }
};

1120 1121 1122 1123 1124 1125
template <typename T>
struct PowGradFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
1126 1127 1128 1129
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(factor) *
C
chengduo 已提交
1130
                   x.pow(static_cast<T>(factor) - static_cast<T>(1));
1131
  }
1132 1133

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1134 1135
};

1136 1137 1138 1139 1140 1141 1142
template <typename T>
struct STanhFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
1143

F
fengjiayi 已提交
1144 1145 1146
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
1147
        static_cast<T>(scale_b) * (static_cast<T>(scale_a) * x).tanh();
1148 1149 1150
  }
};

1151 1152 1153 1154 1155 1156 1157
template <typename T>
struct STanhGradFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
1158

F
fengjiayi 已提交
1159 1160 1161
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
1162 1163 1164
    auto a = static_cast<T>(scale_a);
    auto b = static_cast<T>(scale_b);
    auto temp = (a * x).tanh() * (a * x).tanh();
F
fengjiayi 已提交
1165
    dx.device(d) = dout * a * b * (static_cast<T>(1) - temp);
Q
qijun 已提交
1166
  }
1167 1168

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
Q
qijun 已提交
1169 1170
};

1171 1172 1173 1174 1175 1176 1177
template <typename T>
struct ThresholdedReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
1178 1179
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
1180
    auto th = static_cast<T>(threshold);
F
fengjiayi 已提交
1181
    out.device(d) = (x > th).template cast<T>() * x;
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
  }
};

template <typename T>
struct ThresholdedReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
1192 1193 1194
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
1195
    auto th = static_cast<T>(threshold);
F
fengjiayi 已提交
1196
    dx.device(d) = dout * (x > th).template cast<T>();
1197
  }
1198 1199

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1200 1201
};

1202 1203 1204 1205 1206 1207 1208 1209
template <typename T>
struct HardSigmoidFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }

F
fengjiayi 已提交
1210 1211
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
1212
    auto temp = x * static_cast<T>(slope) + static_cast<T>(offset);
F
fengjiayi 已提交
1213 1214
    out.device(d) =
        temp.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(1));
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
  }
};

template <typename T>
struct HardSigmoidGradFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }
F
fengjiayi 已提交
1225 1226 1227 1228 1229 1230 1231
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
                   ((out > static_cast<T>(0)) * (out < static_cast<T>(1)))
                       .template cast<T>() *
                   static_cast<T>(slope);
1232
  }
1233 1234

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
1235 1236
};

A
Abhinav Arora 已提交
1237 1238 1239 1240 1241 1242 1243
template <typename T>
struct SwishFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
1244 1245 1246
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x / (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
A
Abhinav Arora 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
  }
};

template <typename T>
struct SwishGradFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
1257 1258
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
1259
  void operator()(Device d, X x, Out fake_out, dOut dout, dX dx) const {
A
Abhinav Arora 已提交
1260
    auto temp1 = static_cast<T>(1) /
1261
                 (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
1262
    auto out = x * temp1;
D
dzhwinter 已提交
1263 1264
    auto temp2 = temp1 * (static_cast<T>(1) - (static_cast<T>(beta) * out));
    dx.device(d) = dout * ((static_cast<T>(beta) * out) + temp2);
A
Abhinav Arora 已提交
1265
  }
1266 1267

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
A
Abhinav Arora 已提交
1268 1269
};

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
/*
 * in arguments: x, out, ddx
 * out arguments: ddout, dout, dx
 */
template <ActBwdOpFwdDeps kDepValue>
inline void ExtractActivationDoubleGradTensor(
    const framework::ExecutionContext& ctx, const framework::Tensor** X,
    const framework::Tensor** Out, const framework::Tensor** ddX,
    framework::Tensor** dX, framework::Tensor** dOut,
    framework::Tensor** ddOut) {
  auto ddx_var = ctx.InputVar("DDX");
  auto ddo_var = ctx.OutputVar("DDOut");
  PADDLE_ENFORCE(ddx_var != nullptr,
1283
                 "Cannot get input Variable Out, variable name = %s",
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
                 ctx.op().Input("DDX"));
  if (CanBeUsedBySelectedRows.count(ctx.op().Type())) {
    *ddX = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*ddx_var);
    if (ddo_var) {
      *ddOut = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
          ddo_var);
    }
  } else {
    *ddX = ctx.Input<framework::Tensor>("DDX");
    if (ddo_var) {
      *ddOut = ctx.Output<framework::Tensor>("DDOut");
    }
  }
  PADDLE_ENFORCE(*ddX != nullptr,
1298
                 "Cannot get output tensor DDX, variable name = %s",
1299 1300 1301 1302 1303
                 ctx.op().Output("DDX"));

  if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
    auto x_var = ctx.InputVar("X");
    PADDLE_ENFORCE(x_var != nullptr,
1304
                   "Cannot get input Variable Out, variable name = %s",
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
                   ctx.op().Input("X"));
    auto dx_var = ctx.OutputVar("DX");
    if (CanBeUsedBySelectedRows.count(ctx.op().Type())) {
      *X = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var);
      if (dx_var) {
        *dX = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
            dx_var);
      }
    } else {
      *X = ctx.Input<framework::Tensor>("X");
      if (dx_var) {
        *dX = ctx.Output<framework::Tensor>("DX");
      }
    }
  } else {
1320
    VLOG(10) << "Inplace activation of Op: " << ctx.op().Type();
1321 1322
    *X = *ddX;
  }
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
  if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
    auto out_var = ctx.InputVar("Out");
    PADDLE_ENFORCE(out_var != nullptr,
                   "Cannot get input tensor Out, variable name = %s",
                   ctx.op().Input("Out"));
    auto dout_var = ctx.OutputVar("DOut");
    if (CanBeUsedBySelectedRows.count(ctx.op().Type())) {
      *Out =
          paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*out_var);
      if (dout_var) {
        *dOut =
            paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
                dout_var);
      }
    } else {
      *Out = ctx.Input<framework::Tensor>("Out");
      if (dout_var) {
        *dOut = ctx.Output<framework::Tensor>("DOut");
      }
    }
  } else {
    VLOG(10) << "Inplace activation of Op: " << ctx.op().Type();
    *Out = *ddX;
  }
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
}

template <typename DeviceContext, typename Functor>
class ActivationDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *X, *Out, *ddX;
    X = Out = ddX = nullptr;
    framework::Tensor *ddOut, *dOut, *dX;
    ddOut = dOut = dX = nullptr;

    ExtractActivationDoubleGradTensor<Functor::FwdDeps()>(ctx, &X, &Out, &ddX,
                                                          &dX, &dOut, &ddOut);

    if (ddOut) ddOut->mutable_data<T>(ctx.GetPlace());
    if (dOut) dOut->mutable_data<T>(ctx.GetPlace());
    if (dX) dX->mutable_data<T>(Out->dims(), ctx.GetPlace());

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = ctx.Attr<float>(attr.first);
    }
    functor(place, X, Out, ddX, ddOut, dOut, dX);
  }
};

template <typename T>
struct ReluGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* Out, const framework::Tensor* ddX,
                  framework::Tensor* ddOut, framework::Tensor* dOut,
                  framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(detail::Ref(ddX));
    auto out = framework::EigenVector<T>::Flatten(detail::Ref(Out));
    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(detail::Ref(ddOut));
      ddout.device(*d) = ddx * (out > static_cast<T>(0)).template cast<T>();
    }
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
};

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
template <typename T>
struct LeakyReluGradGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* Out, const framework::Tensor* ddX,
                  framework::Tensor* ddOut, framework::Tensor* dOut,
                  framework::Tensor* dX) const {
    if (ddOut) {
Z
Zeng Jinle 已提交
1408 1409 1410
      auto* d = dev.eigen_device();
      auto ddx = framework::EigenVector<T>::Flatten(detail::Ref(ddX));
      auto out = framework::EigenVector<T>::Flatten(detail::Ref(Out));
1411
      auto ddout = framework::EigenVector<T>::Flatten(detail::Ref(ddOut));
1412 1413 1414 1415 1416
      ddout.device(*d) = ddx *
                         ((out > static_cast<T>(0)).template cast<T>() +
                          static_cast<T>(alpha) *
                              (out <= static_cast<T>(0)).template cast<T>())
                             .template cast<T>();
1417 1418
    }
  }
Z
Zeng Jinle 已提交
1419
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
1420 1421
};

L
lvmengsi 已提交
1422 1423 1424 1425 1426 1427 1428 1429 1430
template <typename T>
struct SqrtGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* Out,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  framework::Tensor* dOut, const framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(detail::Ref(ddX));
    auto out = framework::EigenVector<T>::Flatten(detail::Ref(Out));
1431 1432
    // sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
    // calculate dy first, so ddy can inplace ddx
L
lvmengsi 已提交
1433 1434 1435 1436 1437
    if (dOut) {
      auto dx = framework::EigenVector<T>::Flatten(detail::Ref(dX));
      auto dout = framework::EigenVector<T>::Flatten(detail::Ref(dOut));
      dout.device(*d) = dx * ddx * static_cast<T>(-1) / out;
    }
1438 1439 1440 1441
    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(detail::Ref(ddOut));
      ddout.device(*d) = ddx * static_cast<T>(0.5) / out;
    }
L
lvmengsi 已提交
1442 1443 1444 1445
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
};

1446 1447 1448 1449 1450 1451 1452 1453 1454
template <typename T>
struct SquareGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  const framework::Tensor* dOut, framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(detail::Ref(ddX));
    auto x = framework::EigenVector<T>::Flatten(detail::Ref(X));
1455 1456
    // square GradGrad: ddy=2x*ddx, dx=2dy*ddx
    // calculate dx first, so ddy can inplace ddx
1457 1458 1459 1460 1461
    if (dX) {
      auto dx = framework::EigenVector<T>::Flatten(detail::Ref(dX));
      auto dout = framework::EigenVector<T>::Flatten(detail::Ref(dOut));
      dx.device(*d) = ddx * static_cast<T>(2) * dout;
    }
1462 1463 1464 1465
    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(detail::Ref(ddOut));
      ddout.device(*d) = ddx * static_cast<T>(2) * x;
    }
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

// TODO(dengkaipeng): double gradient calculation for Square/Sqrt need
// DOut(dy) as input(not output), tensor extraction is different from
// others. Impliment extraction kernel seperately here.
inline void ExtractDoubleGradTensorWithInputDOut(
    const framework::ExecutionContext& ctx, const framework::Tensor** X,
    const framework::Tensor** ddX, framework::Tensor** dX,
    const framework::Tensor** dOut, framework::Tensor** ddOut) {
  // extract ddX(output), ddOut(input)
  auto ddx_var = ctx.InputVar("DDX");
  auto ddo_var = ctx.OutputVar("DDOut");
  PADDLE_ENFORCE(ddx_var != nullptr,
                 "Cannot get input Variable Out, variable name = %s",
                 ctx.op().Input("DDX"));
  *ddX = ctx.Input<framework::Tensor>("DDX");
  if (ddo_var) {
    *ddOut = ctx.Output<framework::Tensor>("DDOut");
  }
  PADDLE_ENFORCE(*ddX != nullptr,
                 "Cannot get output tensor DDX, variable name = %s",
                 ctx.op().Output("DDX"));

  // extract x(input), dx(output)
  auto x_var = ctx.InputVar("X");
  PADDLE_ENFORCE(x_var != nullptr,
                 "Cannot get input Variable Out, variable name = %s",
                 ctx.op().Input("X"));
  auto dx_var = ctx.OutputVar("DX");
  *X = ctx.Input<framework::Tensor>("X");
  if (dx_var) {
    *dX = ctx.Output<framework::Tensor>("DX");
  }

  // extract dOut(input)
  auto dout_var = ctx.InputVar("DOut");
  if (dout_var) {
    *dOut = ctx.Input<framework::Tensor>("DOut");
  }
}

template <typename DeviceContext, typename Functor>
class SquareDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *X, *ddX, *dOut;
    X = ddX = dOut = nullptr;
    framework::Tensor *dX, *ddOut;
    dX = ddOut = nullptr;

    ExtractDoubleGradTensorWithInputDOut(ctx, &X, &ddX, &dX, &dOut, &ddOut);

L
lvmengsi 已提交
1522 1523
    if (dX) dX->mutable_data<T>(X->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(ctx.GetPlace());
1524 1525 1526 1527 1528 1529 1530 1531

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    functor(place, X, ddX, ddOut, dOut, dX);
  }
};

L
lvmengsi 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
template <typename DeviceContext, typename Functor>
class SqrtDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *Out, *dX, *ddX;
    Out = dX = ddX = nullptr;
    framework::Tensor *ddOut, *dOut;
    ddOut = dOut = nullptr;

    // extract ddx(input), ddout(output)
    auto ddx_var = ctx.InputVar("DDX");
    auto ddo_var = ctx.OutputVar("DDOut");
    PADDLE_ENFORCE(ddx_var != nullptr,
                   "Cannot get input Variable DDX, variable name = %s",
                   ctx.op().Input("DDX"));
    ddX = ctx.Input<framework::Tensor>("DDX");
    if (ddo_var) {
      ddOut = ctx.Output<framework::Tensor>("DDOut");
    }
    PADDLE_ENFORCE(ddX != nullptr,
                   "Cannot get input Variable DDX, variable name = %s",
                   ctx.op().Input("DDX"));

    // extract out(input), dout(output)
    auto out_var = ctx.InputVar("Out");
    PADDLE_ENFORCE(out_var != nullptr,
                   "Cannot get input Variable Out, variable name = %s",
                   ctx.op().Input("Out"));
    auto dout_var = ctx.OutputVar("DOut");
    Out = ctx.Input<framework::Tensor>("Out");
    if (dout_var) {
      dOut = ctx.Output<framework::Tensor>("DOut");
    }

    // extract dx(input)
    auto dx_var = ctx.InputVar("DX");
    PADDLE_ENFORCE(dx_var != nullptr,
                   "Cannot get input Variable DX, variable name = %s",
                   ctx.op().Input("DX"));
    if (dx_var) {
      dX = ctx.Input<framework::Tensor>("DX");
    }

    if (dOut) dOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(Out->dims(), ctx.GetPlace());

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    functor(place, Out, ddX, ddOut, dOut, dX);
  }
};

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
template <typename DeviceContext, typename Functor>
class PowKernel : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;

  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor* X = nullptr;
    framework::Tensor* Out = nullptr;
    ExtractActivationTensor(context, &X, &Out);
    Out->mutable_data<T>(context.GetPlace());

    auto x = framework::EigenVector<T>::Flatten(detail::Ref(X));
    auto out = framework::EigenVector<T>::Flatten(detail::Ref(Out));
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
    // get FactorTensor
    auto* factor_tensor = context.HasInput("FactorTensor")
                              ? context.Input<framework::Tensor>("FactorTensor")
                              : nullptr;
    if (factor_tensor) {
      auto* factor_data = factor_tensor->data<float>();
      framework::Tensor cpu_factor_tensor;
      if (platform::is_gpu_place(factor_tensor->place())) {
        TensorCopySync(*factor_tensor, platform::CPUPlace(),
                       &cpu_factor_tensor);
        factor_data = cpu_factor_tensor.data<float>();
      }
      auto factor =
          std::vector<float>(factor_data, factor_data + factor_tensor->numel());
      PADDLE_ENFORCE_EQ(factor.size(), 1,
                        "The shape of factor(tensor) MUST BE [1].");
      for (auto& attr : attrs) {
        *attr.second = factor[0];
      }
    }
    functor(*place, x, out);
  }
};

template <typename DeviceContext, typename Functor>
class PowGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor *X, *Out, *dOut;
    framework::Tensor* dX = nullptr;
    X = Out = dOut = nullptr;
    ExtractActivationGradTensor<Functor::FwdDeps()>(context, &X, &Out, &dOut,
                                                    &dX);
    dX->mutable_data<T>(context.GetPlace());
    auto dout = framework::EigenVector<T>::Flatten(detail::Ref(dOut));
    auto out = framework::EigenVector<T>::Flatten(detail::Ref(Out));
    auto dx = framework::EigenVector<T>::Flatten(detail::Ref(dX));
    auto x = framework::EigenVector<T>::Flatten(detail::Ref(X));
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
    // get FactorTensor
    auto* factor_tensor =
        context.HasInput("FactorTensor")
            ? context.Input<framework::LoDTensor>("FactorTensor")
            : nullptr;
    if (factor_tensor) {
      auto* factor_data = factor_tensor->data<float>();
      framework::Tensor cpu_factor_tensor;
      if (platform::is_gpu_place(factor_tensor->place())) {
        TensorCopySync(*factor_tensor, platform::CPUPlace(),
                       &cpu_factor_tensor);
        factor_data = cpu_factor_tensor.data<float>();
      }
      auto factor =
          std::vector<float>(factor_data, factor_data + factor_tensor->numel());
      PADDLE_ENFORCE_EQ(factor.size(), 1,
                        "The shape of factor(tensor) MUST BE [1].");
      for (auto& attr : attrs) {
        *attr.second = factor[0];
      }
    }
    functor(*place, x, out, dout, dx);
  }
};
Q
qijun 已提交
1678 1679
}  // namespace operators
}  // namespace paddle
1680

1681 1682 1683 1684 1685 1686 1687 1688
#define FOR_EACH_ACTIVATION_OP(__macro)                                       \
  __macro(sigmoid, Sigmoid, SigmoidFunctor, SigmoidGradFunctor);              \
  __macro(logsigmoid, LogSigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor);  \
  __macro(exp, Exp, ExpFunctor, ExpGradFunctor);                              \
  __macro(gelu, Gelu, GeluFunctor, GeluGradFunctor);                          \
  __macro(tanh, Tanh, TanhFunctor, TanhGradFunctor);                          \
  __macro(atan, Atan, AtanFunctor, AtanGradFunctor);                          \
  __macro(softshrink, SoftShrink, SoftShrinkFunctor, SoftShrinkGradFunctor);  \
Z
zhoukunsheng 已提交
1689
  __macro(rsqrt, Rsqrt, RsqrtFunctor, RsqrtGradFunctor);                      \
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
  __macro(abs, Abs, AbsFunctor, AbsGradFunctor);                              \
  __macro(ceil, Ceil, CeilFunctor, ZeroGradFunctor);                          \
  __macro(floor, Floor, FloorFunctor, ZeroGradFunctor);                       \
  __macro(cos, Cos, CosFunctor, CosGradFunctor);                              \
  __macro(acos, Acos, AcosFunctor, AcosGradFunctor);                          \
  __macro(sin, Sin, SinFunctor, SinGradFunctor);                              \
  __macro(asin, Asin, AsinFunctor, AsinGradFunctor);                          \
  __macro(round, Round, RoundFunctor, ZeroGradFunctor);                       \
  __macro(reciprocal, Reciprocal, ReciprocalFunctor, ReciprocalGradFunctor);  \
  __macro(log, Log, LogFunctor, LogGradFunctor);                              \
  __macro(brelu, BRelu, BReluFunctor, BReluGradFunctor);                      \
  __macro(soft_relu, SoftRelu, SoftReluFunctor, SoftReluGradFunctor);         \
  __macro(stanh, STanh, STanhFunctor, STanhGradFunctor);                      \
  __macro(softplus, Softplus, SoftplusFunctor, SoftplusGradFunctor);          \
  __macro(softsign, Softsign, SoftsignFunctor, SoftsignGradFunctor);          \
  __macro(relu6, Relu6, Relu6Functor, Relu6GradFunctor);                      \
  __macro(tanh_shrink, TanhShrink, TanhShrinkFunctor, TanhShrinkGradFunctor); \
  __macro(elu, ELU, ELUFunctor, ELUGradFunctor);                              \
  __macro(hard_shrink, HardShrink, HardShrinkFunctor, HardShrinkGradFunctor); \
  __macro(hard_sigmoid, HardSigmoid, HardSigmoidFunctor,                      \
          HardSigmoidGradFunctor);                                            \
  __macro(swish, Swish, SwishFunctor, SwishGradFunctor);                      \
  __macro(thresholded_relu, ThresholdedRelu, ThresholdedReluFunctor,          \
H
huangjun12 已提交
1713 1714
          ThresholdedReluGradFunctor);                                        \
  __macro(hard_swish, HardSwish, HardSwishFunctor, HardSwishGradFunctor);