“d49d4b035e91f5456cfdbdbfd0a04d870d63f302”上不存在“docs/zh/12-taos-sql/03-table.md”
init.cc 8.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dzhwinter 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yu 已提交
14
#include <string.h>  // for strdup
D
dzhwinter 已提交
15
#include <algorithm>
C
chengduo 已提交
16 17
#include <fstream>
#include <iostream>
Q
qingqing01 已提交
18 19
#include <memory>
#include <set>
D
dzhwinter 已提交
20
#include <stdexcept>
D
dzhwinter 已提交
21 22
#include <string>

Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/operator.h"
T
tensor-tang 已提交
24
#include "paddle/fluid/platform/cpu_helper.h"
T
tensor-tang 已提交
25
#include "paddle/fluid/platform/cpu_info.h"
26
#include "paddle/fluid/string/split.h"
S
sneaxiy 已提交
27
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
28
#include "paddle/fluid/platform/cuda_device_guard.h"
29
#include "paddle/fluid/platform/dynload/cupti.h"
S
sneaxiy 已提交
30
#endif
Y
Yi Wang 已提交
31
#include "paddle/fluid/platform/device_context.h"
32
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/platform/place.h"
34
#include "paddle/fluid/string/piece.h"
35

36
DECLARE_int32(paddle_num_threads);
37 38 39
DEFINE_int32(multiple_of_cupti_buffer_size, 1,
             "Multiple of the CUPTI device buffer size. If the timestamps have "
             "been dropped when you are profiling, try increasing this value.");
T
tensor-tang 已提交
40

41 42 43 44 45 46 47 48 49 50
namespace paddle {
namespace platform {

void ParseCommandLineFlags(int argc, char **argv, bool remove) {
  google::ParseCommandLineFlags(&argc, &argv, remove);
}

}  // namespace platform
}  // namespace paddle

D
dzhwinter 已提交
51 52 53
namespace paddle {
namespace framework {

54 55 56 57
#ifdef _WIN32
#define strdup _strdup
#endif

D
dzhwinter 已提交
58
std::once_flag gflags_init_flag;
59
std::once_flag glog_init_flag;
X
Xin Pan 已提交
60
std::once_flag p2p_init_flag;
61
std::once_flag glog_warning_once_flag;
D
dzhwinter 已提交
62

63
void InitGflags(std::vector<std::string> argv) {
D
dzhwinter 已提交
64
  std::call_once(gflags_init_flag, [&]() {
C
chengduo 已提交
65
    FLAGS_logtostderr = true;
L
Leo Chen 已提交
66 67 68 69 70
    // NOTE(zhiqiu): dummy is needed, since the function
    // ParseNewCommandLineFlags in gflags.cc starts processing
    // commandline strings from idx 1.
    // The reason is, it assumes that the first one (idx 0) is
    // the filename of executable file.
W
wanghaoshuang 已提交
71
    argv.insert(argv.begin(), "dummy");
D
dzhwinter 已提交
72 73 74 75 76 77 78 79
    int argc = argv.size();
    char **arr = new char *[argv.size()];
    std::string line;
    for (size_t i = 0; i < argv.size(); i++) {
      arr[i] = &argv[i][0];
      line += argv[i];
      line += ' ';
    }
L
Leo Chen 已提交
80 81
    VLOG(1) << "Before Parse: argc is " << argc
            << ", Init commandline: " << line;
D
dzhwinter 已提交
82
    google::ParseCommandLineFlags(&argc, &arr, true);
L
Leo Chen 已提交
83
    VLOG(1) << "After Parse: argc is " << argc;
D
dzhwinter 已提交
84 85 86
  });
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
void InitP2P(std::vector<int> devices) {
#ifdef PADDLE_WITH_CUDA
  std::call_once(p2p_init_flag, [&]() {
    int count = devices.size();
    for (int i = 0; i < count; ++i) {
      for (int j = 0; j < count; ++j) {
        if (devices[i] == devices[j]) continue;
        int can_acess = -1;
        PADDLE_ENFORCE(
            cudaDeviceCanAccessPeer(&can_acess, devices[i], devices[j]),
            "Failed to test P2P access.");
        if (can_acess != 1) {
          LOG(WARNING) << "Cannot enable P2P access from " << devices[i]
                       << " to " << devices[j];
        } else {
Y
Yu Yang 已提交
102
          platform::CUDADeviceGuard guard(devices[i]);
103 104 105 106 107 108 109 110
          cudaDeviceEnablePeerAccess(devices[j], 0);
        }
      }
    }
  });
#endif
}

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
void InitCupti() {
#ifdef PADDLE_WITH_CUPTI
  if (FLAGS_multiple_of_cupti_buffer_size == 1) return;
  size_t attrValue = 0, attrValueSize = sizeof(size_t);
#define MULTIPLY_ATTR_VALUE(attr)                                 \
  {                                                               \
    PADDLE_ENFORCE(!platform::dynload::cuptiActivityGetAttribute( \
        attr, &attrValueSize, &attrValue));                       \
    attrValue *= FLAGS_multiple_of_cupti_buffer_size;             \
    LOG(WARNING) << "Set " #attr " " << attrValue << " byte";     \
    PADDLE_ENFORCE(!platform::dynload::cuptiActivitySetAttribute( \
        attr, &attrValueSize, &attrValue));                       \
  }
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_SIZE);
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_SIZE_CDP);
#if CUDA_VERSION >= 9000
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_PROFILING_SEMAPHORE_POOL_SIZE);
#endif
#undef MULTIPLY_ATTR_VALUE
#endif
}

X
Xin Pan 已提交
133
void InitDevices(bool init_p2p) {
134 135 136
  // CUPTI attribute should be set before any CUDA context is created (see CUPTI
  // documentation about CUpti_ActivityAttribute).
  InitCupti();
137
  /*Init all available devices by default */
138
  std::vector<int> devices;
139
#ifdef PADDLE_WITH_CUDA
D
dzhwinter 已提交
140
  try {
141 142
    // use user specified GPUs in single-node multi-process mode.
    devices = platform::GetSelectedDevices();
D
dzhwinter 已提交
143 144
  } catch (const std::exception &exp) {
    LOG(WARNING) << "Compiled with WITH_GPU, but no GPU found in runtime.";
145
  }
D
dzhwinter 已提交
146
#endif
147
  InitDevices(init_p2p, devices);
D
dzhwinter 已提交
148 149
}

150 151 152 153
void InitDevices(bool init_p2p, const std::vector<int> devices) {
  std::vector<platform::Place> places;

  for (size_t i = 0; i < devices.size(); ++i) {
154 155 156
    // In multi process multi gpu mode, we may have gpuid = 7
    // but count = 1.
    if (devices[i] < 0) {
157 158 159
      LOG(WARNING) << "Invalid devices id.";
      continue;
    }
160

161 162 163 164 165 166 167
    places.emplace_back(platform::CUDAPlace(devices[i]));
  }
  if (init_p2p) {
    InitP2P(devices);
  }
  places.emplace_back(platform::CPUPlace());
  platform::DeviceContextPool::Init(places);
Q
qingqing01 已提交
168

169
#ifndef PADDLE_WITH_MKLDNN
T
tensor-tang 已提交
170
  platform::SetNumThreads(FLAGS_paddle_num_threads);
171
#endif
T
tensor-tang 已提交
172

T
tensor-tang 已提交
173
#if !defined(_WIN32) && !defined(__APPLE__) && !defined(__OSX__)
T
tensor-tang 已提交
174
  if (platform::MayIUse(platform::avx)) {
T
tensor-tang 已提交
175 176 177 178
#ifndef __AVX__
    LOG(WARNING) << "AVX is available, Please re-compile on local machine";
#endif
  }
179 180 181 182 183 184 185 186 187 188

// Throw some informations when CPU instructions mismatch.
#define AVX_GUIDE(compiletime, runtime)                                     \
  LOG(FATAL)                                                                \
      << "This version is compiled on higher instruction(" #compiletime     \
         ") system, you may encounter illegal instruction error running on" \
         " your local CPU machine. Please reinstall the " #runtime          \
         " version or compile from source code."

#ifdef __AVX512F__
T
tensor-tang 已提交
189 190
  if (!platform::MayIUse(platform::avx512f)) {
    if (platform::MayIUse(platform::avx2)) {
191
      AVX_GUIDE(AVX512, AVX2);
T
tensor-tang 已提交
192
    } else if (platform::MayIUse(platform::avx)) {
193 194 195 196 197
      AVX_GUIDE(AVX512, AVX);
    } else {
      AVX_GUIDE(AVX512, NonAVX);
    }
  }
T
tensor-tang 已提交
198
#endif
199 200

#ifdef __AVX2__
T
tensor-tang 已提交
201 202
  if (!platform::MayIUse(platform::avx2)) {
    if (platform::MayIUse(platform::avx)) {
203 204 205 206
      AVX_GUIDE(AVX2, AVX);
    } else {
      AVX_GUIDE(AVX2, NonAVX);
    }
T
tensor-tang 已提交
207 208
  }
#endif
209 210

#ifdef __AVX__
T
tensor-tang 已提交
211
  if (!platform::MayIUse(platform::avx)) {
212
    AVX_GUIDE(AVX, NonAVX);
T
tensor-tang 已提交
213
  }
214 215
#endif
#undef AVX_GUIDE
T
tensor-tang 已提交
216 217

#endif
218 219
}

C
chengduo 已提交
220
#ifndef _WIN32
221
void SignalHandle(const char *data, int size) {
C
chengduo 已提交
222 223
  auto file_path = string::Sprintf("/tmp/paddle.%d.dump_info", ::getpid());
  try {
224 225
    // The signal is coming line by line but we print general guide just once
    std::call_once(glog_warning_once_flag, [&]() {
226 227 228 229 230
      LOG(WARNING) << "Warning: PaddlePaddle catches a failure signal, it may "
                      "not work properly\n";
      LOG(WARNING) << "You could check whether you killed PaddlePaddle "
                      "thread/process accidentally or report the case to "
                      "PaddlePaddle\n";
231 232 233
      LOG(WARNING) << "The detail failure signal is:\n\n";
    });

234
    LOG(WARNING) << std::string(data, size);
C
chengduo 已提交
235 236 237 238 239 240 241 242 243
    std::ofstream dump_info;
    dump_info.open(file_path, std::ios::app);
    dump_info << std::string(data, size);
    dump_info.close();
  } catch (...) {
  }
}
#endif

Y
Yang Yu 已提交
244
void InitGLOG(const std::string &prog_name) {
245 246 247 248
  std::call_once(glog_init_flag, [&]() {
    // glog will not hold the ARGV[0] inside.
    // Use strdup to alloc a new string.
    google::InitGoogleLogging(strdup(prog_name.c_str()));
C
chengduo 已提交
249
#ifndef _WIN32
250 251
    google::InstallFailureSignalHandler();
    google::InstallFailureWriter(&SignalHandle);
C
chengduo 已提交
252
#endif
253
  });
Y
Yang Yu 已提交
254 255
}

D
dzhwinter 已提交
256 257
}  // namespace framework
}  // namespace paddle