math.h 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

// See Note: [ How do we organize the kernel directory ]
18
#include "paddle/pten/api/lib/utils/storage.h"
19
#include "paddle/pten/include/infermeta.h"
20 21
#include "paddle/pten/kernels/cpu/math.h"
#include "paddle/pten/kernels/cuda/math.h"
22
#include "paddle/pten/kernels/scale_kernel.h"
23 24 25 26 27

namespace pten {

template <typename T, typename ContextT>
DenseTensor Sign(const ContextT& dev_ctx, const DenseTensor& x) {
28
  auto out_meta = UnchangedInferMeta(x.meta());
29 30 31 32
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
33 34 35 36 37
  Sign<T>(dev_ctx, x, &dense_out);
  return dense_out;
}

template <typename T, typename ContextT>
38 39 40 41 42
DenseTensor Mean(const ContextT& dev_ctx,
                 const DenseTensor& x,
                 const std::vector<int64_t>& axis,
                 bool keep_dim) {
  auto out_meta = ReduceInferMeta(x.meta(), axis, keep_dim);
43 44 45 46
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
47
  bool reduce_all = false;
48
  Mean<T>(dev_ctx, x, axis, keep_dim, reduce_all, &dense_out);
49 50 51 52 53 54 55 56 57
  return dense_out;
}

template <typename T, typename ContextT>
DenseTensor Sum(const ContextT& dev_ctx,
                const DenseTensor& x,
                const std::vector<int64_t>& axis,
                DataType dtype,
                bool keep_dim) {
58
  auto out_meta = ReduceInferMeta(x.meta(), axis, keep_dim, dtype);
59 60 61 62
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      out_meta);
63 64 65 66 67

  // The real value of reduce_all will be get in kernel
  // so use default value(false) is OK.
  bool reduce_all = false;

68
  Sum<T>(dev_ctx, x, axis, keep_dim, reduce_all, out_meta.dtype, &dense_out);
69 70 71 72 73 74
  return dense_out;
}

template <typename T, typename ContextT>
DenseTensor Scale(const ContextT& dev_ctx,
                  const DenseTensor& x,
C
Chen Weihang 已提交
75
                  const Scalar& scale,
76 77
                  float bias,
                  bool bias_after_scale) {
78
  auto out_meta = UnchangedInferMeta(x.meta());
79 80 81 82
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
83
  Scale<T, ContextT>(dev_ctx, x, scale, bias, bias_after_scale, &dense_out);
84 85 86 87
  return dense_out;
}

template <typename T, typename ContextT>
88 89 90 91
DenseTensor Add(const ContextT& dev_ctx,
                const DenseTensor& x,
                const DenseTensor& y,
                int axis) {
92
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
93 94 95 96
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
97
  Add<T>(dev_ctx, x, y, axis, &dense_out);
98 99
  return dense_out;
}
100 101 102 103 104 105

template <typename T, typename ContextT>
DenseTensor Subtract(const ContextT& dev_ctx,
                     const DenseTensor& x,
                     const DenseTensor& y,
                     int axis) {
106
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
107 108 109 110
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
111
  Subtract<T>(dev_ctx, x, y, axis, &dense_out);
112 113 114
  return dense_out;
}

115 116 117 118 119
template <typename T, typename ContextT>
DenseTensor Divide(const ContextT& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& y,
                   int axis) {
120
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
121 122 123 124
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
125
  Divide<T>(dev_ctx, x, y, axis, &dense_out);
126 127
  return dense_out;
}
Y
YuanRisheng 已提交
128 129 130 131 132 133

template <typename T, typename ContextT>
DenseTensor Multiply(const ContextT& dev_ctx,
                     const DenseTensor& x,
                     const DenseTensor& y,
                     int axis) {
134
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
135 136 137 138
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
139
  Multiply<T>(dev_ctx, x, y, axis, &dense_out);
Y
YuanRisheng 已提交
140 141
  return dense_out;
}
142
}  // namespace pten