test_distillation_strategy.py 3.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
#   copyright (c) 2019 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
#     http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.

import paddle
import unittest
import paddle.fluid as fluid
from mobilenet import MobileNet
from paddle.fluid.contrib.slim.core import Compressor
from paddle.fluid.contrib.slim.graph import GraphWrapper


class TestDistillationStrategy(unittest.TestCase):
    """
    Test API of distillation strategy.
    """

    def test_compression(self):
        if not fluid.core.is_compiled_with_cuda():
            return
        class_dim = 10
        image_shape = [1, 28, 28]
        image = fluid.layers.data(
            name='image', shape=image_shape, dtype='float32')
        image.stop_gradient = False
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
        out = MobileNet(name="student").net(input=image, class_dim=class_dim)
        acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
        val_program = fluid.default_main_program().clone(for_test=False)

        cost = fluid.layers.cross_entropy(input=out, label=label)
        avg_cost = fluid.layers.mean(x=cost)
        optimizer = fluid.optimizer.Momentum(
            momentum=0.9,
            learning_rate=0.01,
            regularization=fluid.regularizer.L2Decay(4e-5))

        place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        val_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size=128)

        val_feed_list = [('img', image.name), ('label', label.name)]
        val_fetch_list = [('acc_top1', acc_top1.name), ('acc_top5',
                                                        acc_top5.name)]

        train_reader = paddle.batch(
            paddle.dataset.mnist.train(), batch_size=128)
        train_feed_list = [('img', image.name), ('label', label.name)]
        train_fetch_list = [('loss', avg_cost.name)]

        # define teacher program
        teacher_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(teacher_program, startup_program):
            img = teacher_program.global_block()._clone_variable(
                image, force_persistable=False)
            predict = MobileNet(name="teacher").net(input=img,
                                                    class_dim=class_dim)

        exe.run(startup_program)

        com_pass = Compressor(
            place,
            fluid.global_scope(),
            fluid.default_main_program(),
            train_reader=train_reader,
            train_feed_list=train_feed_list,
            train_fetch_list=train_fetch_list,
            eval_program=val_program,
            eval_reader=val_reader,
            eval_feed_list=val_feed_list,
            eval_fetch_list=val_fetch_list,
            teacher_programs=[teacher_program.clone(for_test=True)],
            train_optimizer=optimizer,
            distiller_optimizer=optimizer)
        com_pass.config('./distillation/compress.yaml')
        eval_graph = com_pass.run()


if __name__ == '__main__':
    unittest.main()