device_context.h 24.3 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3
Copyright (c) 2022 NVIDIA Corporation. All rights reserved.

Q
QI JUN 已提交
4 5 6 7 8 9 10 11 12 13 14
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

W
Wilber 已提交
15
#include <functional>
16
#include <future>  // NOLINT
D
dzhwinter 已提交
17
#include <memory>
Y
yuyang18 已提交
18
#include <mutex>  // NOLINT
19
#include <string>
D
dzhwinter 已提交
20
#include <unordered_map>
21
#include <utility>
22
#include <vector>
W
wanghuancoder 已提交
23

24
#include "paddle/fluid/memory/malloc.h"
W
Wilber 已提交
25
#include "paddle/fluid/platform/device/gpu/gpu_types.h"
26
#include "paddle/phi/backends/cpu/cpu_context.h"
27
#include "paddle/phi/backends/custom/custom_context.h"
28 29
#include "paddle/phi/backends/gpu/gpu_decls.h"
#include "paddle/phi/core/device_context.h"
30
#ifdef PADDLE_WITH_CUDA
31
#include "paddle/fluid/platform/device/gpu/gpu_helper.h"
Y
Yi Wang 已提交
32
#include "paddle/fluid/platform/dynload/cublas.h"
33
#include "paddle/fluid/platform/dynload/cublasLt.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
35
#include "paddle/fluid/platform/dynload/cusolver.h"
36
#include "paddle/fluid/platform/dynload/cusparse.h"
37
#include "paddle/phi/backends/gpu/gpu_context.h"
38
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
39
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
40
#endif
41
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
Q
QI JUN 已提交
42
#endif
D
dzhwinter 已提交
43

44
#ifdef PADDLE_WITH_HIP
45
#include "paddle/fluid/platform/device/gpu/gpu_helper.h"  // NOLINT
46 47
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
48
#include "paddle/phi/backends/gpu/gpu_context.h"  // NOLINT
49 50 51
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/dynload/rccl.h"
#endif
52
#include "paddle/fluid/platform/device/gpu/gpu_info.h"  // NOLINT
53 54
#endif

55 56 57 58
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
59
#ifdef PADDLE_WITH_MKLDNN
60
#include "dnnl.hpp"  // NOLINT
61
#include "paddle/fluid/framework/data_layout.h"
62
#include "paddle/phi/backends/onednn/onednn_context.h"
T
tensor-tang 已提交
63 64
#endif

65
#include <map>
W
wanghuancoder 已提交
66

67
#include "glog/logging.h"
Y
Yi Wang 已提交
68 69
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
70
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
71
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
72
#endif
73
#ifdef PADDLE_WITH_ASCEND_CL
74 75
#include "paddle/fluid/platform/device/npu/enforce_npu.h"
#include "paddle/fluid/platform/device/npu/npu_stream.h"
76
#endif
77

78 79
#include "paddle/phi/backends/device_ext.h"
#include "paddle/phi/backends/stream.h"
80 81

#if !defined(PADDLE_WITH_XPU_KP) || defined(__xpu_on_host__)
Q
qijun 已提交
82
#include "unsupported/Eigen/CXX11/Tensor"
83
#endif
Q
QI JUN 已提交
84

W
wanghuancoder 已提交
85 86 87 88 89
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

90
#ifdef PADDLE_WITH_XPU
91 92
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
93
#include "paddle/phi/backends/xpu/xpu_context.h"
94 95
#endif

96 97
#ifdef PADDLE_WITH_ASCEND_CL
#include "acl/acl.h"
98
#include "paddle/fluid/platform/device/npu/npu_info.h"
99 100
#endif

Q
QI JUN 已提交
101 102 103
namespace paddle {
namespace platform {

104
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
105 106 107 108
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
A
AshburnLee 已提交
109
extern bool allow_tf32_cudnn;
A
AshburnLee 已提交
110 111 112 113
/*Set the value of the global variable allow_tf32_cudnn*/
void SetAllowTF32Cudnn(bool active);
/*Get the global variable allow_tf32_cudnn value*/
bool AllowTF32Cudnn();
114 115
#endif  // PADDLE_WITH_CUDA

116 117 118 119
enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
120
  NPU = 3,
J
jianghaicheng 已提交
121
  IPU = 4,
F
fwenguang 已提交
122 123 124
  MLU = 5,

  MAX_DEVICE_TYPES = 6,
125 126
};

127 128
DeviceType Place2DeviceType(const platform::Place& place);

129 130 131
constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;
132
constexpr DeviceType kNPU = DeviceType::NPU;
J
jianghaicheng 已提交
133
constexpr DeviceType kIPU = DeviceType::IPU;
F
fwenguang 已提交
134
constexpr DeviceType kMLU = DeviceType::MLU;
135

136
using DeviceContext = phi::DeviceContext;
Q
QI JUN 已提交
137

Y
Yang Yu 已提交
138 139 140 141 142
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
L
Leo Chen 已提交
143
  using TYPE = phi::CPUContext;
Y
Yang Yu 已提交
144 145
};

J
jianghaicheng 已提交
146 147 148 149 150 151 152 153
// Graphcore IPU
#ifdef PADDLE_WITH_IPU
class IPUDeviceContext : public DeviceContext {
 public:
  IPUDeviceContext() = delete;
  explicit IPUDeviceContext(IPUPlace place);
  virtual ~IPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
W
Wilber 已提交
154
  const Place& GetPlace() const override;
J
jianghaicheng 已提交
155 156 157 158 159 160 161 162 163 164
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

 private:
  IPUPlace place_;
};
template <>
struct DefaultDeviceContextType<platform::IPUPlace> {
  using TYPE = IPUDeviceContext;
};
F
fwenguang 已提交
165
#endif
J
jianghaicheng 已提交
166

F
fwenguang 已提交
167 168 169 170 171
#ifdef PADDLE_WITH_MLU
class MLUDeviceContext;

template <>
struct DefaultDeviceContextType<platform::MLUPlace>;
J
jianghaicheng 已提交
172 173
#endif

174
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
175
namespace xpu = baidu::xpu::api;
176
class XPUDeviceContext : public phi::XPUContext {
177 178 179 180 181
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
182
  xpuStream stream() const { return XPUContext::x_context()->xpu_stream; }
183 184 185 186 187 188 189 190
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

191 192 193 194 195 196
#ifdef PADDLE_WITH_ASCEND_CL
class NPUDeviceContext : public DeviceContext {
 public:
  explicit NPUDeviceContext(NPUPlace place);
  virtual ~NPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
W
Wilber 已提交
197
  const Place& GetPlace() const override;
198
  aclrtContext context() const;
199

200 201 202 203 204 205
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

  /*! \brief  Return npu stream in the device context. */
  aclrtStream stream() const;

206 207 208 209 210 211 212
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
#if defined(PADDLE_WITH_ASCEND_CL)
  /*! \brief  Return hccl communicators. */
  HcclComm hccl_comm() const { return hccl_comm_; }

  /*! \brief  Set hccl communicators. */
  void set_hccl_comm(HcclComm comm) { hccl_comm_ = comm; }
#endif

  // template <typename Callback>
  // void AddStreamCallback(Callback&& callback) const {
  //   return stream_->AddCallback(callback);
  // }

  // void WaitStreamCallback() const { return stream_->WaitCallback(); }

228 229 230
 private:
  NPUPlace place_;
  aclrtContext context_;
231 232 233 234

#ifdef PADDLE_WITH_ASCEND_CL
  // HCCLContext_t hccl_context_;
  HcclComm hccl_comm_{nullptr};
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
#endif

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in NPU
  // NOTE(zhiqiu): why need?
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  std::shared_ptr<stream::NPUStream> stream_;

  DISABLE_COPY_AND_ASSIGN(NPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::NPUPlace> {
  using TYPE = NPUDeviceContext;
};
250 251 252 253 254 255 256

// Currently, NPUPinnedDeviceContext is only used to data copying.
class NPUPinnedDeviceContext : public DeviceContext {
 public:
  NPUPinnedDeviceContext();
  explicit NPUPinnedDeviceContext(NPUPinnedPlace place);

W
Wilber 已提交
257
  const Place& GetPlace() const override;
258 259 260 261 262 263 264 265 266 267 268 269 270

  Eigen::DefaultDevice* eigen_device() const;

 private:
  NPUPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::NPUPinnedPlace> {
  using TYPE = NPUPinnedDeviceContext;
};

271 272 273
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
274
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
275
class EigenCudaStreamDevice;
S
sneaxiy 已提交
276

277 278 279 280 281
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
282 283
      const stream::Priority& priority = stream::Priority::kNormal,
      const stream::StreamFlag& flag = stream::StreamFlag::kDefaultFlag);
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

299 300 301 302 303 304
  stream::CUDAStream* SetStream(stream::CUDAStream* new_stream_ptr) {
    auto* old_stream_ptr = stream_.release();
    stream_.reset(new_stream_ptr);
    return old_stream_ptr;
  }

W
Wilber 已提交
305 306
  void SetStream(gpuStream_t stream);

307
  const gpuStream_t& RawStream() { return stream_->raw_stream(); }
308

309 310 311
#ifdef PADDLE_WITH_HIP
  const miopenHandle_t& CudnnHandle() const { return cudnn_handle_; }
#else
312
  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }
313
#endif
314

315
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
316 317 318
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }
319
#endif
G
Guo Sheng 已提交
320

321 322 323 324 325 326 327 328
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

Z
zhangkaihuo 已提交
329
#ifndef PADDLE_WITH_HIP
330 331 332 333 334 335
#if CUDA_VERSION >= 11060
  const std::unique_ptr<CublasLtHandleHolder>& CublasLtHandle() const {
    return cublaslt_handle_;
  }
#endif

Z
zhangkaihuo 已提交
336 337 338 339 340
  const std::unique_ptr<CusparseHandleHolder>& CusparseHandle() const {
    return cusparse_handle_;
  }
#endif

341
  /*! \brief  Call cublas function safely. */
W
Wilber 已提交
342 343
  inline void CublasCall(
      const std::function<void(blasHandle_t)>& callback) const {
344
    if (cublas_tf32_tensor_core_handle_) {
W
Wilber 已提交
345
      cublas_tf32_tensor_core_handle_->Call(callback);
346
    } else {
W
Wilber 已提交
347
      cublas_handle_->Call(callback);
348
    }
349 350
  }

Z
zhangkaihuo 已提交
351
#ifndef PADDLE_WITH_HIP
352 353 354 355 356 357 358 359
#if CUDA_VERSION >= 11060
  /*! \brief  Call cublasLt function safely. */
  inline void CublasLtCall(
      const std::function<void(blasLtHandle_t)>& callback) const {
    cublaslt_handle_->Call(callback);
  }
#endif

Z
zhangkaihuo 已提交
360
  /*! \brief  Call cusparse function safely. */
W
Wilber 已提交
361
  inline void CusparseCall(
362
      const std::function<void(phi::sparseHandle_t)>& callback) const {
W
Wilber 已提交
363
    cusparse_handle_->Call(callback);
Z
zhangkaihuo 已提交
364 365 366
  }
#endif

367 368 369 370 371
  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
W
Wilber 已提交
372 373
  inline void TensorCoreCublasCallIfAvailable(
      const std::function<void(blasHandle_t)>& callback) const {
374
    if (cublas_tensor_core_handle_) {
W
Wilber 已提交
375
      cublas_tensor_core_handle_->Call(callback);
376
    } else {
W
Wilber 已提交
377
      cublas_handle_->Call(callback);
378 379 380 381 382 383
    }
  }

 private:
  void InitEigenContext();

384 385 386 387 388
#ifdef PADDLE_WITH_HIP
  void InitCuBlasContext() {
    cublas_handle_.reset(new CublasHandleHolder(RawStream()));
  }
#else
389 390 391 392 393 394 395
  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
396 397 398 399 400
#if CUDA_VERSION >= 11000
      cublas_tf32_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif  // CUDA_VERSION >= 11000
#endif  // CUDA_VERSION >= 9000
401 402
    }
  }
403
#endif
404

Z
zhangkaihuo 已提交
405
#ifndef PADDLE_WITH_HIP
406 407 408 409 410 411
#if CUDA_VERSION >= 11060
  void InitCuBlasLtContext() {
    cublaslt_handle_.reset(new CublasLtHandleHolder());
  }
#endif

Z
zhangkaihuo 已提交
412 413 414 415 416
  void InitCuSparseContext() {
    cusparse_handle_.reset(new CusparseHandleHolder(RawStream()));
  }
#endif

417 418
  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
419 420
#ifdef PADDLE_WITH_HIP
      size_t miopen_major, miopen_minor, miopen_patch;
421
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenGetVersion(
422 423
          &miopen_major, &miopen_minor, &miopen_patch));
      auto local_miopen_version =
424 425
          (miopen_major * 1000 + miopen_minor * 10 + miopen_patch) / 10;
      auto compile_miopen_version = MIOPEN_VERSION / 10;
426 427 428 429
      if (local_miopen_version < static_cast<size_t>(compile_miopen_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with MIOPEN "
430 431
            << compile_miopen_version / 100 << "."
            << compile_miopen_version % 100
432
            << ", but MIOPEN version in your machine is "
433
            << local_miopen_version / 100 << "." << local_miopen_version % 100
434 435 436 437
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible MIOPEN "
               "version.";
      }
438 439
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenCreate(&cudnn_handle_));
      PADDLE_ENFORCE_GPU_SUCCESS(
440 441
          dynload::miopenSetStream(cudnn_handle_, RawStream()));
#else
442 443 444 445 446 447 448 449 450 451 452 453 454
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
455 456
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
457
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
458
#endif
459 460 461 462 463
    } else {
      cudnn_handle_ = nullptr;
    }
  }

464
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
465
  void InitCuSolverContext() {
466 467
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
468 469
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }
470
#endif
G
Guo Sheng 已提交
471

472 473
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
474
#ifdef PADDLE_WITH_HIP
475
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenDestroy(cudnn_handle_));
476
#else
477
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
478
#endif
479 480 481 482 483 484 485
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
486
    cublas_tf32_tensor_core_handle_.reset();
487 488
  }

Z
zhangkaihuo 已提交
489
#ifndef PADDLE_WITH_HIP
490 491 492 493
#if CUDA_VERSION >= 11060
  void DestoryCuBlasLtContext() { cublaslt_handle_.reset(); }
#endif

Z
zhangkaihuo 已提交
494 495 496
  void DestoryCuSparseContext() { cusparse_handle_.reset(); }
#endif

497
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
498 499
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
500
      PADDLE_ENFORCE_GPU_SUCCESS(
G
Guo Sheng 已提交
501 502 503
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }
504
#endif
G
Guo Sheng 已提交
505

506 507 508 509
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
510 511 512
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle_;
#else
513
  cudnnHandle_t cudnn_handle_;
514
#endif
515 516
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
517
  std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
518
#ifndef PADDLE_WITH_HIP
519 520 521
#if CUDA_VERSION >= 11060
  std::unique_ptr<CublasLtHandleHolder> cublaslt_handle_;
#endif
G
Guo Sheng 已提交
522
  cusolverDnHandle_t cusolver_dn_handle_;
Z
zhangkaihuo 已提交
523
  std::unique_ptr<CusparseHandleHolder> cusparse_handle_;
524
#endif
525 526 527
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

528
class CUDADeviceContext : public phi::GPUContext {
Q
QI JUN 已提交
529
 public:
D
dzhwinter 已提交
530
  explicit CUDADeviceContext(CUDAPlace place);
531
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
532

533
  /*! \brief  Wait for all operations completion in the stream. */
534
  void Wait() const override;
Q
QI JUN 已提交
535

536 537 538
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

539
  /*! \brief  Call cublas function safely. */
W
Wilber 已提交
540 541 542
  inline void CublasCall(
      const std::function<void(blasHandle_t)>& callback) const {
    if (!thread_ctx_.count(this)) {
543
      phi::GPUContext::CublasCall(callback);
W
Wilber 已提交
544 545
      return;
    }
546
    return context()->CublasCall(callback);
547 548
  }

Z
zhangkaihuo 已提交
549 550
#ifndef PADDLE_WITH_HIP
  /*! \brief  Call cusparse function safely. */
W
Wilber 已提交
551
  inline void CusparseCall(
552
      const std::function<void(phi::sparseHandle_t)>& callback) const {
W
Wilber 已提交
553
    if (!thread_ctx_.count(this)) {
554
      phi::GPUContext::CusparseCall(callback);
W
Wilber 已提交
555 556 557
      return;
    }
    context()->CusparseCall(callback);
Z
zhangkaihuo 已提交
558 559 560
  }
#endif

561 562
  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
W
Wilber 已提交
563 564 565
  inline void TensorCoreCublasCallIfAvailable(
      const std::function<void(blasHandle_t)>& callback) const {
    if (!thread_ctx_.count(this)) {
566
      phi::GPUContext::TensorCoreCublasCallIfAvailable(callback);
W
Wilber 已提交
567 568 569
      return;
    }
    context()->TensorCoreCublasCallIfAvailable(callback);
570
  }
S
sneaxiy 已提交
571

572 573 574 575
/*! \brief  Return cudnn  handle in the device context. */
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle() const;
#else
576
  cudnnHandle_t cudnn_handle() const;
577
#endif
578

579 580 581 582
/*! \brief  Return cublas handle in the device context. */
#ifdef PADDLE_WITH_HIP
  rocblas_handle cublas_handle() const;
#else
583
  cublasHandle_t cublas_handle() const;
584
  cublasLtHandle_t cublaslt_handle() const;
Z
zhangkaihuo 已提交
585
  cusparseHandle_t cusparse_handle() const;
586
#endif
587

W
Wilber 已提交
588 589 590 591
#ifndef PADDLE_WITH_HIP
  cusolverDnHandle_t cusolver_dn_handle() const;
#endif

S
sneaxiy 已提交
592 593 594 595 596 597 598
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
599
  phi::DnnWorkspaceHandle cudnn_workspace_handle() const;
S
sneaxiy 已提交
600

Q
init  
qijun 已提交
601
  /*! \brief  Return cuda stream in the device context. */
602
  gpuStream_t stream() const;
Q
QI JUN 已提交
603

W
Wilber 已提交
604
  void RecordEvent(gpuEvent_t ev, const std::function<void()>& callback) const;
605

W
Wilber 已提交
606
  void AddStreamCallback(const std::function<void()>& callback) const;
607

W
Wilber 已提交
608
  void WaitStreamCallback() const;
609

610
  void ResetThreadContext(const stream::Priority& priority) {
611
    std::lock_guard<std::mutex> guard(ctx_mtx_);
W
Wilber 已提交
612
    thread_ctx_[this].reset(new CUDAContext(this->GetPlace(), priority));
613 614
  }

W
Wilber 已提交
615
  std::shared_ptr<CUDAContext> context() const;
S
sneaxiy 已提交
616

W
Wilber 已提交
617 618 619 620 621
  // Note: Can only be used under thread_local semantics.
  void SetThreadLocalStream(const gpuStream_t stream) {
    thread_ctx_.at(this)->SetStream(stream);
  }

W
Wilber 已提交
622 623 624 625
  // NOTE: Just for compatibility with the past, please delete if there is an
  // elegant way.
  stream::CUDAStream* GetCudaStream() const;
  stream::CUDAStream* SetCudaStream(stream::CUDAStream*);
Q
QI JUN 已提交
626

W
Wilber 已提交
627
 private:
628 629 630 631 632 633
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
634

635 636
  mutable std::mutex cudnn_handle_mtx_;

W
Wilber 已提交
637 638 639
  // NOTE: Just for compatibility with the past, please delete if there is an
  // elegant way.
  std::unique_ptr<stream::CUDAStream> cuda_stream_;
Y
yuyang18 已提交
640

641
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
642
};
Q
qijun 已提交
643

644 645
class CudnnWorkspaceHandle {
 public:
646 647
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
648 649 650 651 652 653 654 655

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
656 657 658 659
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
660 661 662 663 664 665 666 667 668 669 670 671 672
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

673
  void ReallocWorkspace(size_t required_workspace_bytes);
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
690
  std::mutex* mtx_;
691 692
};

Y
Yang Yu 已提交
693 694
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
695
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
696 697
};

C
chengduoZH 已提交
698
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
699 700 701 702 703
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

W
Wilber 已提交
704
  const Place& GetPlace() const override;
C
chengduoZH 已提交
705

C
chengduoZH 已提交
706 707 708 709 710 711 712 713 714 715 716
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
717
#endif
Q
qijun 已提交
718

T
tensor-tang 已提交
719
#ifdef PADDLE_WITH_MKLDNN
720 721
using MKLDNNDeviceContextThreadLocals = phi::OneDNNContextThreadLocals;
using MKLDNNDeviceContext = phi::OneDNNContext;
T
tensor-tang 已提交
722 723
#endif

724
#ifdef PADDLE_WITH_CUSTOM_DEVICE
725
class CustomDeviceContext : public phi::CustomContext {
726 727 728 729 730 731 732 733 734 735 736 737 738 739
 public:
  explicit CustomDeviceContext(CustomPlace place);
  virtual ~CustomDeviceContext();

  Eigen::DefaultDevice* eigen_device() const { return nullptr; }

  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

 private:
740
  std::shared_ptr<phi::stream::Stream> stream_;
741 742 743 744 745 746 747 748 749 750 751 752
};
template <>
struct DefaultDeviceContextType<platform::CustomPlace> {
  using TYPE = CustomDeviceContext;
};
#else
template <>
struct DefaultDeviceContextType<platform::CustomPlace> {
  using TYPE = DeviceContext;
};
#endif

753 754 755 756 757 758
void EmplaceDeviceContexts(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        place_to_device_context,
    const std::vector<platform::Place>& places,
    bool disable_setting_default_stream_for_allocator);

D
dzhwinter 已提交
759 760 761
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
Y
Yang Yu 已提交
762
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
763 764 765
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
766 767 768 769
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
770
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
771 772 773 774 775 776
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

777 778
  static bool IsInitialized() { return pool != nullptr; }

779 780
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
781
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
782
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
783

Y
Yang Yu 已提交
784 785 786 787 788 789 790
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

791
  size_t size() const;
792

793
  const std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>&
794 795 796 797 798
  device_contexts() const;

  static void SetDeviceContexts(
      const std::map<Place,
                     std::shared_future<std::unique_ptr<DeviceContext>>>*);
799

D
dzhwinter 已提交
800
 private:
801 802
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

D
dzhwinter 已提交
803
  static DeviceContextPool* pool;
804 805
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
806 807 808
  static thread_local const std::
      map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
          external_device_contexts_;  // not owned
D
dzhwinter 已提交
809 810 811
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
812 813
}  // namespace platform
}  // namespace paddle