model_parser.cc 7.8 KB
Newer Older
S
superjomn 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

S
update  
superjomn 已提交
15 16
#include "paddle/fluid/lite/model_parser/model_parser.h"
#include <fstream>
17
#include "paddle/fluid/lite/core/compatible_tensor.h"
S
update  
superjomn 已提交
18 19
#include "paddle/fluid/lite/core/scope.h"
#include "paddle/fluid/lite/core/variable.h"
S
update  
superjomn 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

namespace paddle {
namespace lite {

int SizeOfType(framework::proto::VarType::Type type) {
  using Type = framework::proto::VarType::Type;
  switch (static_cast<int>(type)) {
#define DO(desc, type)            \
  case Type::VarType_Type_##desc: \
    return sizeof(type);
    DO(BOOL, bool);
    DO(FP16, float);
    DO(FP32, float);
    DO(INT8, int8_t);
    DO(INT32, int);
    DO(INT64, int64_t);
#undef DO
    default:
S
Superjomn 已提交
38
      LOG(FATAL) << "unknown data type " << type;
S
update  
superjomn 已提交
39
  }
S
Superjomn 已提交
40
  return -1;
S
update  
superjomn 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
}

void TensorFromStream(std::istream &is, lite::Tensor *tensor) {
  using Type = framework::proto::VarType::Type;
  uint32_t version;
  is.read(reinterpret_cast<char *>(&version), sizeof(version));
  CHECK_EQ(version, 0U) << "Only version 0 is supported";
  // read tensor desc
  framework::proto::VarType::TensorDesc desc;
  {
    // int32_t size
    // proto buffer
    int32_t size;
    is.read(reinterpret_cast<char *>(&size), sizeof(size));
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char *>(buf.get()), size);
    CHECK(desc.ParseFromArray(buf.get(), size)) << "Cannot parse tensor desc";
  }

  // read tensor
  std::vector<int64_t> dims;
  std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims));
63
  tensor->Resize(lite::DDim(&dims[0], dims.size()));
S
update  
superjomn 已提交
64 65 66 67
  void *buf;
  size_t size = product(tensor->dims()) * SizeOfType(desc.data_type());
  // alllocate memory
  switch (static_cast<int>(desc.data_type())) {
68 69 70 71
#define DO(desc, type)                                              \
  case Type::VarType_Type_##desc:                                   \
    buf = TensorMutableData<type>(tensor, TensorGetTarget(*tensor), \
                                  product(tensor->dims()));
S
update  
superjomn 已提交
72 73 74 75 76 77 78 79 80
    break;
    DO(BOOL, bool);
    DO(FP32, float);
    DO(INT8, int8_t);
    DO(INT16, int16_t);
    DO(INT32, int32_t);
    DO(INT64, int64_t);
#undef DO
    default:
81
      LOG(FATAL) << "unknown type " << desc.data_type();
S
update  
superjomn 已提交
82 83 84 85 86 87 88
  }

  is.read(static_cast<char *>(buf), size);
}

void LoadLoDTensor(std::istream &is, Variable *var) {
  auto *tensor = var->GetMutable<lite::Tensor>();
S
Superjomn 已提交
89
  uint32_t version{};
S
update  
superjomn 已提交
90 91 92 93
  is.read(reinterpret_cast<char *>(&version), sizeof(version));
  LOG(INFO) << "model version " << version;

  // Load LoD information
S
Superjomn 已提交
94
  uint64_t lod_level{};
S
update  
superjomn 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
  is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size;
    is.read(reinterpret_cast<char *>(&size), sizeof(size));
    std::vector<size_t> tmp(size / sizeof(size_t));
    is.read(reinterpret_cast<char *>(tmp.data()),
            static_cast<std::streamsize>(size));
    lod[i] = tmp;
  }

  TensorFromStream(is, tensor);
}

// TODO(Superjomn) support SelectedRows.

void ReadBinaryFile(const std::string &filename, std::string *contents) {
  std::ifstream fin(filename, std::ios::in | std::ios::binary);
  CHECK(fin.is_open()) << "Cannot open file " << filename;
  fin.seekg(0, std::ios::end);
  auto size = fin.tellg();
  contents->clear();
  contents->resize(size);
  fin.seekg(0, std::ios::beg);
  fin.read(&(contents->at(0)), contents->size());
  fin.close();
}

std::unique_ptr<framework::proto::ProgramDesc> LoadProgram(
    const std::string &path) {
  std::string desc_str;
  ReadBinaryFile(path, &desc_str);
  std::unique_ptr<framework::proto::ProgramDesc> main_program(
      new framework::proto::ProgramDesc);
  main_program->ParseFromString(desc_str);
  return main_program;
}

void LoadParams(const std::string &path) {}

C
update  
Chunwei 已提交
136 137 138
// Load directly to CPU, and latter transfer to other devices.
void LoadParam(const std::string &path, Variable *out) {
  std::ifstream fin(path, std::ios::binary);
S
Superjomn 已提交
139
  CHECK(fin.is_open()) << "failed to open file " << path;
C
update  
Chunwei 已提交
140 141 142
  LoadLoDTensor(fin, out);
}

S
superjomn 已提交
143 144
void LoadModel(const std::string &model_dir, Scope *scope,
               framework::proto::ProgramDesc *prog) {
S
update  
superjomn 已提交
145
  const std::string prog_path = model_dir + "/__model__";
S
superjomn 已提交
146
  *prog = *LoadProgram(prog_path);
S
update  
superjomn 已提交
147 148 149

  auto main_block = prog->blocks(0);
  for (auto &var : main_block.vars()) {
S
superjomn 已提交
150 151 152
    if (var.name() == "feed" || var.name() == "fetch" || !var.persistable())
      continue;

S
update  
superjomn 已提交
153
    std::string file_path = model_dir + "/" + var.name();
S
superjomn 已提交
154 155
    LOG(INFO) << "reading weight " << var.name();

S
update  
superjomn 已提交
156
    std::ifstream file(file_path);
S
superjomn 已提交
157 158 159 160 161 162 163
    switch (var.type().type()) {
      case framework::proto::VarType_Type_LOD_TENSOR:
        LoadLoDTensor(file, scope->Var(var.name()));
        break;
      default:
        CHECK(false) << "unknown weight type";
    }
S
update  
superjomn 已提交
164 165
  }
}
S
superjomn 已提交
166

S
Superjomn 已提交
167
void TensorToStream(std::ostream &os, const lite::Tensor &tensor) {
S
Superjomn 已提交
168 169 170
  // the 1st field, uint32_t version
  constexpr uint32_t version = 0;
  os.write(reinterpret_cast<const char *>(&version), sizeof(version));
S
Superjomn 已提交
171 172

  {
S
Superjomn 已提交
173
    uint64_t size = tensor.lod().size();
S
Superjomn 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    // the 2st field, LoD information
    // uint64_t lod_level
    // uint64_t lod_level_1 size in byte.
    // int*     lod_level_1 data
    // ...
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));

    for (auto &each : tensor.lod()) {
      size = each.size() * sizeof(each.front());
      os.write(reinterpret_cast<const char *>(&size), sizeof(size));
      os.write(reinterpret_cast<const char *>(each.data()),
               static_cast<std::streamsize>(size));
    }
  }

S
Superjomn 已提交
189 190 191
  // There are two version fields in a LoDTensor.
  os.write(reinterpret_cast<const char *>(&version), sizeof(version));

S
Superjomn 已提交
192 193 194 195
  {  // the 2nd field, tensor description
    // int32_t  size
    // void*    protobuf message
    framework::proto::VarType::TensorDesc desc;
S
Superjomn 已提交
196 197
    // TODO(Superjomn) support other data types.
    desc.set_data_type(framework::proto::VarType_Type_FP32);
S
Superjomn 已提交
198 199 200
    auto dims = tensor.dims();
    auto *pb_dims = desc.mutable_dims();
    pb_dims->Resize(static_cast<int>(dims.size()), 0);
201 202
    auto dims_vec = DDimVectorize(dims);
    std::copy(dims_vec.begin(), dims_vec.end(), pb_dims->begin());
S
Superjomn 已提交
203 204 205 206 207 208 209 210 211 212 213
    int32_t size = desc.ByteSize();
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));
    auto out = desc.SerializeAsString();
    os.write(out.data(), size);
  }
  {  // the 3rd field, tensor data
    uint64_t size = tensor.memory_size();
    CHECK_LT(size, std::numeric_limits<std::streamsize>::max())
        << "Index overflow when writing tensor";

#ifdef LITE_WITH_CUDA
214
    if (TensorGetTarget(tensor) == TARGET(kCUDA)) {
S
Superjomn 已提交
215
      std::unique_ptr<char> tmp_buffer(new char[size]);
216
      TargetWrapperCuda::MemcpySync(tmp_buffer.get(), tensor.data<float>(),
S
Superjomn 已提交
217 218 219 220 221 222 223 224 225 226 227 228
                                    tensor.memory_size(), IoDirection::DtoH);
      os.write(static_cast<const char *>(tmp_buffer.get()),
               static_cast<std::streamsize>(size));
    } else
#endif  // LITE_WITH_CUDA
    {
      os.write(static_cast<const char *>(tensor.data<void>()),
               static_cast<std::streamsize>(size));
    }
  }
}

S
Superjomn 已提交
229 230
void SerializeTensor(std::ostream &os, const lite::Scope &scope,
                     const std::string &var_name) {
S
Superjomn 已提交
231
  // Store all the persistable vars.
S
Superjomn 已提交
232 233 234
  auto *var = scope.FindVar(var_name);
  const auto &tensor = var->Get<lite::Tensor>();
  TensorToStream(os, tensor);
S
Superjomn 已提交
235 236
}

S
update  
superjomn 已提交
237 238
}  // namespace lite
}  // namespace paddle