pool_mkldnn_op.cc 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

X
xiaoli.liu@intel.com 已提交
15
#include "paddle/fluid/framework/data_layout_transform.h"
16 17
#include "paddle/fluid/operators/pool_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
18
#include "paddle/fluid/platform/mkldnn_reuse.h"
19 20 21 22

namespace paddle {
namespace operators {

23 24
using framework::DataLayout;
using mkldnn::memory;
25
using mkldnn::pooling_backward;
26 27 28 29 30
using mkldnn::pooling_forward;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
31

32 33 34 35 36 37 38 39 40 41 42 43
template <typename T>
class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();

    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");

44 45 46 47
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Input tensor");
48 49 50 51 52

    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
53 54
    bool global_pooling = ctx.Attr<bool>("global_pooling");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
55

56 57 58 59 60 61 62 63 64 65 66 67 68
    // Only 2D pooling is supported now
    PADDLE_ENFORCE_EQ(ksize.size(), 2, "ksize must be 2D, i.e. 2D pooling");
    PADDLE_ENFORCE_EQ(pooling_type == "max" || pooling_type == "avg", true,
                      "pooling_type must be 'max' or 'avg'");
    PADDLE_ENFORCE_EQ(input->dims().size(), 4,
                      "Input dim must be with 4, i.e. NCHW");

    auto input_dims = input->dims();
    framework::DDim data_dims =
        framework::slice_ddim(input_dims, 2, input_dims.size());

    if (global_pooling) {
      UpdateKsize(&ksize, data_dims);
69 70
    }

71 72
    UpdatePadding(&paddings, global_pooling, 0, padding_algorithm, data_dims,
                  strides, ksize);
73

74 75
    auto src_tz = paddle::framework::vectorize<int>(input->dims());
    auto dst_tz = paddle::framework::vectorize<int>(output->dims());
76

77 78 79 80 81 82
    auto is_test = ctx.Attr<bool>("is_test");

    platform::PoolingMKLDNNHandler<T> handler(
        src_tz, dst_tz, ksize, strides, paddings, pooling_type,
        ctx.Attr<bool>("ceil_mode"), input->format(),
        paddle::framework::ToMKLDNNDataType(input->type()), is_test, dev_ctx,
83
        ctx.GetPlace(), ctx.op().Output("Out"), ctx.Attr<bool>("exclusive"));
84 85 86 87 88 89

    auto src_memory = handler.AcquireSrcMemory(input);
    auto dst_memory = handler.AcquireDstMemory(output);

    std::shared_ptr<mkldnn::pooling_forward> pool_p;
    std::shared_ptr<mkldnn::memory> workspace_memory;
90

91 92 93 94 95 96 97 98 99
    if ((is_test == false) && (pooling_type == "max")) {
      // Training
      workspace_memory = handler.AcquireWorkspaceMemory();
      pool_p = handler.AcquireForwardPrimitive(*src_memory, *dst_memory,
                                               *workspace_memory);
    } else {
      // Inference
      pool_p = handler.AcquireForwardPrimitive(*src_memory, *dst_memory);
    }
100 101

    // push primitive to stream and wait until it's executed
102
    std::vector<mkldnn::primitive> pipeline{*pool_p};
103 104 105
    stream(stream::kind::eager).submit(pipeline).wait();

    output->set_layout(DataLayout::kMKLDNN);
A
Adam 已提交
106
    output->set_format(platform::GetMKLDNNFormat(*dst_memory));
107 108 109 110 111 112 113 114 115 116 117 118 119 120
  }
};

template <typename T>
class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    const Tensor* in_x = ctx.Input<Tensor>("X");
    const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* in_x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

121 122 123 124
    PADDLE_ENFORCE_EQ(in_x->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
    PADDLE_ENFORCE_NE(in_x->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Input tensor");
125

126 127 128 129 130 131 132
    PADDLE_ENFORCE_EQ(out_grad->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input output_grad tensor");
    PADDLE_ENFORCE_NE(out_grad->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Input output_grad tensor");

    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
133 134
        "is_test attribute should be set to False in training phase.");

135 136 137 138
    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
139 140
    bool global_pooling = ctx.Attr<bool>("global_pooling");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
141

142 143 144 145 146 147
    auto in_x_dims = in_x->dims();
    framework::DDim data_dims =
        framework::slice_ddim(in_x_dims, 2, in_x_dims.size());

    if (global_pooling) {
      UpdateKsize(&ksize, data_dims);
148 149
    }

150 151 152
    UpdatePadding(&paddings, global_pooling, 0, padding_algorithm, data_dims,
                  strides, ksize);

153 154 155
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();

156 157
    std::vector<mkldnn::primitive> pipeline;

158 159
    auto diff_src_tz = paddle::framework::vectorize<int>(in_x_grad->dims());
    auto diff_dst_tz = paddle::framework::vectorize<int>(out_grad->dims());
160

161 162
    // Get an unique name from "argument" name of "Out" variable
    // This name will be used as key when referring info from device context
163
    const std::string key = platform::CreateKey(
164 165
        diff_src_tz, pooling_type, ksize, strides, paddings,
        memory::data_type::f32, in_x->format(), ctx.op().Input("Out"));
166

167 168 169 170
    platform::PoolingMKLDNNHandler<T> handler(
        diff_dst_tz, diff_src_tz, ksize, strides, paddings, pooling_type,
        ctx.Attr<bool>("ceil_mode"), in_x->format(), out_grad->format(),
        paddle::framework::ToMKLDNNDataType(out_grad->type()), dev_ctx,
171
        ctx.GetPlace(), ctx.op().Input("Out"), ctx.Attr<bool>("exclusive"));
172 173 174 175 176 177

    auto diff_dst_memory = handler.AcquireDiffDstMemory(out_grad);
    auto diff_src_memory = handler.AcquireDiffSrcMemory(in_x_grad);

    std::shared_ptr<mkldnn::pooling_backward> pool_bwd_p;
    std::shared_ptr<mkldnn::memory> workspace_memory;
178

179 180 181 182 183 184 185 186 187 188
    if (pooling_type == "max") {
      // Max - pooling needs Workspace
      workspace_memory = handler.AcquireWorkspaceMemory();
      pool_bwd_p = handler.AcquireBackwardPrimitive(
          *diff_dst_memory, *workspace_memory, *diff_src_memory);
    } else {
      // Average Pooling
      pool_bwd_p =
          handler.AcquireBackwardPrimitive(*diff_dst_memory, *diff_src_memory);
    }
189

190
    pipeline.push_back(*pool_bwd_p);
191
    mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
192 193

    in_x_grad->set_layout(DataLayout::kMKLDNN);
A
Adam 已提交
194
    in_x_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory));
195 196 197 198 199 200
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

201 202
namespace ops = paddle::operators;

203
REGISTER_OP_KERNEL(pool2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaoli.liu@intel.com 已提交
204 205 206 207
                   ops::PoolMKLDNNOpKernel<float>,
                   ops::PoolMKLDNNOpKernel<int8_t>,
                   ops::PoolMKLDNNOpKernel<uint8_t>);

208
REGISTER_OP_KERNEL(pool2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
209
                   ops::PoolMKLDNNGradOpKernel<float>);