test_elementwise_api.cc 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <memory>

#include "paddle/pten/api/include/math.h"

#include "paddle/pten/api/lib/utils/allocator.h"
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/core/kernel_registry.h"

namespace framework = paddle::framework;
using DDim = paddle::framework::DDim;

// TODO(chenweihang): Remove this test after the API is used in the dygraph
TEST(API, add) {
  // 1. create tensor
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());
  auto dense_x = std::make_shared<pten::DenseTensor>(
      alloc,
      pten::DenseTensorMeta(pten::DataType::FLOAT32,
                            framework::make_ddim({3, 10}),
                            pten::DataLayout::NCHW));
  auto* dense_x_data = dense_x->mutable_data<float>();

  auto dense_y = std::make_shared<pten::DenseTensor>(
      alloc,
      pten::DenseTensorMeta(pten::DataType::FLOAT32,
                            framework::make_ddim({10}),
                            pten::DataLayout::NCHW));
  auto* dense_y_data = dense_y->mutable_data<float>();

  float sum[3][10] = {0.0};
  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = (i * 10 + j) * 1.0;
      sum[i][j] = (i * 10 + j) * 1.0 + j * 2.0;
    }
  }
  for (size_t i = 0; i < 10; ++i) {
    dense_y_data[i] = i * 2.0;
  }
  paddle::experimental::Tensor x(dense_x);
  paddle::experimental::Tensor y(dense_y);

  // 2. test API
  auto out = paddle::experimental::add(x, y);

  // 3. check result
63
  ASSERT_EQ(out.shape().size(), 2UL);
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
  ASSERT_EQ(out.shape()[0], 3);
  ASSERT_EQ(out.numel(), 30);
  ASSERT_EQ(out.is_cpu(), true);
  ASSERT_EQ(out.type(), pten::DataType::FLOAT32);
  ASSERT_EQ(out.layout(), pten::DataLayout::NCHW);
  ASSERT_EQ(out.initialized(), true);

  auto expect_result = sum;
  auto dense_out = std::dynamic_pointer_cast<pten::DenseTensor>(out.impl());
  auto actual_result0 = dense_out->data<float>()[0];
  auto actual_result1 = dense_out->data<float>()[1];
  auto actual_result2 = dense_out->data<float>()[10];
  ASSERT_NEAR(expect_result[0][0], actual_result0, 1e-6f);
  ASSERT_NEAR(expect_result[0][1], actual_result1, 1e-6f);
  ASSERT_NEAR(expect_result[1][0], actual_result2, 1e-6f);
}
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

// TODO(chenweihang): Remove this test after the API is used in the dygraph
TEST(API, subtract) {
  // 1. create tensor
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());
  auto dense_x = std::make_shared<pten::DenseTensor>(
      alloc,
      pten::DenseTensorMeta(pten::DataType::FLOAT32,
                            framework::make_ddim({3, 10}),
                            pten::DataLayout::NCHW));
  auto* dense_x_data = dense_x->mutable_data<float>();

  auto dense_y = std::make_shared<pten::DenseTensor>(
      alloc,
      pten::DenseTensorMeta(pten::DataType::FLOAT32,
                            framework::make_ddim({10}),
                            pten::DataLayout::NCHW));
  auto* dense_y_data = dense_y->mutable_data<float>();

  float sub[3][10] = {0.0};
  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = (i * 10 + j) * 1.0;
      sub[i][j] = (i * 10 + j) * 1.0 - j * 2.0;
    }
  }
  for (size_t i = 0; i < 10; ++i) {
    dense_y_data[i] = i * 2.0;
  }
  paddle::experimental::Tensor x(dense_x);
  paddle::experimental::Tensor y(dense_y);

  // 2. test API
  auto out = paddle::experimental::subtract(x, y);

  // 3. check result
  ASSERT_EQ(out.shape().size(), 2UL);
  ASSERT_EQ(out.shape()[0], 3);
  ASSERT_EQ(out.numel(), 30);
  ASSERT_EQ(out.is_cpu(), true);
  ASSERT_EQ(out.type(), pten::DataType::FLOAT32);
  ASSERT_EQ(out.layout(), pten::DataLayout::NCHW);
  ASSERT_EQ(out.initialized(), true);

  auto expect_result = sub;
  auto dense_out = std::dynamic_pointer_cast<pten::DenseTensor>(out.impl());
  auto actual_result0 = dense_out->data<float>()[0];
  auto actual_result1 = dense_out->data<float>()[1];
  auto actual_result2 = dense_out->data<float>()[10];
  ASSERT_NEAR(expect_result[0][0], actual_result0, 1e-6f);
  ASSERT_NEAR(expect_result[0][1], actual_result1, 1e-6f);
  ASSERT_NEAR(expect_result[1][0], actual_result2, 1e-6f);
}