fleet_base.py 9.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import abc

19
import paddle.fluid as fluid
T
tangwei12 已提交
20
from paddle.fluid.executor import Executor
21
from paddle.fluid.optimizer import SGD
22

T
tangwei12 已提交
23 24 25
from paddle.fluid.incubate.fleet.base.role_maker import MPISymetricRoleMaker
from paddle.fluid.incubate.fleet.base.role_maker import RoleMakerBase
from paddle.fluid.incubate.fleet.base.role_maker import UserDefinedRoleMaker
26 27


T
tangwei12 已提交
28
class Mode:
T
tangwei12 已提交
29 30 31
    """
    There are various mode for fleet, each of them is designed for different model.
    """
T
tangwei12 已提交
32 33
    TRANSPILER = 1
    PSLIB = 2
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
    COLLECTIVE = 3


class Fleet(object):
    """
    Fleet is the base class, transpiler and pslib are implementation of Fleet.

    Args:
        mode(Mode): the implementation of Fleet's mode.

    Returns:
        None
    """
    __metaclass__ = abc.ABCMeta

    def __init__(self, mode):
T
tangwei12 已提交
50 51 52 53 54
        self._is_initialized = False
        self._mode = mode
        self._optimizer = None
        self._role_maker = None
        self._executor = None
55 56 57 58 59 60 61 62 63

    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
        """
T
tangwei12 已提交
64
        return self._role_maker.is_first_worker()
65

T
tangwei12 已提交
66
    def worker_index(self):
67
        """
T
tangwei12 已提交
68
        Get current worker index.
69 70 71 72

        Returns:
            int: node id
        """
T
tangwei12 已提交
73
        return self._role_maker.worker_index()
74

T
tangwei12 已提交
75
    def worker_num(self):
76 77 78 79
        """
        Get current total worker number.

        Returns:
80
            int: worker numbers
81
        """
82
        return self._role_maker.worker_num()
83 84 85 86 87 88 89 90 91

    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
        """
T
tangwei12 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
        return self._role_maker.is_worker()

    def worker_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
        """

        if to_string:
            return ",".join(self._role_maker.get_trainer_endpoints())
        else:
            return self._role_maker.get_trainer_endpoints()

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
        """
        return len(self._role_maker.get_pserver_endpoints())

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
        """
        return self._role_maker.server_index()

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
        """

        if to_string:
            return ",".join(self._role_maker.get_pserver_endpoints())
        else:
            return self._role_maker.get_pserver_endpoints()
137 138 139 140 141 142 143 144 145

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
        """
T
tangwei12 已提交
146
        return self._role_maker.is_server()
147 148 149 150 151 152 153 154 155 156 157 158 159

    def split_files(self, files):
        """
        split files before distributed training,
        for example, files is [a, b, c ,d, e]  and trainer_num = 2,
        then trainer 0 gets [a, b, c] and trainer 1 gets [d, e]

        Args:
            files(list): file list need to be read.

        Returns:
            list: files belongs to this worker.
        """
T
tangwei12 已提交
160
        trainer_id = self.worker_index()
T
tangwei12 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
        trainers = self.worker_num()

        if len(files) < trainers:
            raise ValueError("file number must gather or equal trainer number")

        remainder = len(files) % trainers
        blocksize = len(files) / trainers

        blocks = [blocksize] * trainers
        for i in range(remainder):
            blocks[i] += 1

        trainer_files = [[]] * trainers
        begin = 0
        for i in range(trainers):
            trainer_files[i] = files[begin:begin + blocks[i]]
            begin += blocks[i]

        return trainer_files[trainer_id]
180

181
    def init(self, role_maker=None):
182 183 184 185 186 187 188 189 190 191 192
        """
        should be called only once in user's python scripts,
        init() will initialize RoleMaker which is used for identifying
            current node's role, e.g. worker, server, etc.

        Args:
            role_maker(RoleMakerBase): subclass of RoleMakerBase.

        Returns:
            None
        """
193
        self._executor = Executor(fluid.CPUPlace())
194 195 196 197

        if role_maker and not isinstance(role_maker, RoleMakerBase):
            raise ValueError("role_maker must be an instance of RoleMakerBase")

198
        self._role_maker = role_maker
199
        self._role_maker.generate_role()
T
tangwei12 已提交
200
        self._is_initialized = True
201 202

    @abc.abstractmethod
T
tangwei12 已提交
203
    def init_worker(self):
204 205 206
        pass

    @abc.abstractmethod
T
tangwei12 已提交
207
    def init_server(self, model_dir=None):
208 209 210
        pass

    @abc.abstractmethod
211
    def run_server(self):
212 213 214 215 216 217 218 219 220 221 222 223
        pass

    @abc.abstractmethod
    def stop_worker(self):
        pass

    @abc.abstractmethod
    def distributed_optimizer(self, optimizer, strategy=None):
        pass

    @abc.abstractmethod
    def save_inference_model(self,
224
                             executor,
225 226 227 228 229 230 231 232
                             dirname,
                             feeded_var_names,
                             target_vars,
                             main_program=None,
                             export_for_deployment=True):
        pass

    @abc.abstractmethod
233
    def save_persistables(self, executor, dirname, main_program=None):
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
        pass


class DistributedOptimizer(object):
    """
    DistributedOptimizer is a wrapper for paddle.fluid.optimizer
    A user should pass a paddle.fluid.optimizer to DistributedOptimizer
    minimize() function is implemented.
    DistributedOptimizer is the starting point for a user who wants to
    run distributed training. The optimized information will be stored in
    Fleet() instance who holds the global information about current distributed
    training.

    Args:
        optimizer(Optimizer): subclass of Optimizer.
T
tangwei12 已提交
249
        strategy(any): the user define config for Optimizer.
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317

    Returns:
        None

    """
    __metaclass__ = abc.ABCMeta

    def __init__(self, optimizer, strategy=None):
        if not isinstance(optimizer, SGD.__bases__):
            raise ValueError("optimizer must be an instance of Optimizer")

        self._optimizer = optimizer
        self._strategy = strategy

    @abc.abstractmethod
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        """
        First part of `minimize`, do auto-diff to append backward ops for
        the current program.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.

        Return:
            list: list of (param, grad) pair, grad is the output of backward.

        Examples:
            See examples in `apply_gradients`.
        """
        pass

    @abc.abstractmethod
    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
        pass

    @abc.abstractmethod
    def minimize(self,
T
tangwei12 已提交
318 319 320
                 losses,
                 scopes=None,
                 startup_programs=None,
321 322 323 324 325 326 327 328 329
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add operations to minimize `loss` by updating `parameter_list`.

        This method combines interface `backward()` and
        `apply_gradients()` into one.

        Args:
T
tangwei12 已提交
330 331 332
            losses (Variable|Variable List): loss variable to run optimizations.
            scopes (Scope| Scope List): scope instance.
            startup_programs (Program|Program List): startup_program for initializing parameters
333 334 335 336 337 338 339 340 341
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.

        Returns:
            tuple: (optimize_ops, params_grads) which are, list of operators appended;
            and list of (param, grad) Variables pair for optimization.
        """
        pass