lod_tensor_test.cc 3.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
  Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at
  http://www.apache.org/licenses/LICENSE-2.0
  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License.
*/

#include "paddle/framework/lod_tensor.h"

#include <glog/logging.h>
#include <gtest/gtest.h>
18
#include <algorithm>
19 20 21 22 23 24 25 26 27 28 29 30 31 32
#include <memory>

namespace paddle {
namespace framework {

class LODTensorTester : public ::testing::Test {
 public:
  virtual void SetUp() override {
    lod_tensor.reset(new LODTensor);
    // tensor's batch_size: 30
    // 3 levels
    // 0 10 20
    // 0 5 10 15 20
    // 0 2 5 7 10 12 15 20
33 34 35 36
    LODTensor::LOD lod;
    lod.push_back(std::vector<size_t>{0, 10, 20});
    lod.push_back(std::vector<size_t>{0, 5, 10, 15, 20});
    lod.push_back(std::vector<size_t>{0, 2, 5, 7, 10, 12, 15, 17, 20});
37

38 39 40
    ASSERT_EQ(lod.size(), 3UL);

    tensor.Resize({20 /*batch size*/, 128 /*dim*/});
41
    // malloc memory
42 43 44 45
    tensor.mutable_data<float>(place);

    lod_tensor.reset(new LODTensor(lod));
    lod_tensor->Resize({20 /*batch size*/, 128 /*dim*/});
46

47 48
    lod_tensor->ShareDataWith<float>(tensor);
    // lod_tensor->ShareDataWith<Tensor>(tensor);
49 50 51 52 53
  }

 protected:
  std::unique_ptr<LODTensor> lod_tensor;
  platform::CPUPlace place;
54
  Tensor tensor;
55 56 57 58 59 60 61 62 63 64
};

TEST_F(LODTensorTester, NumLevels) { ASSERT_EQ(lod_tensor->NumLevels(), 3UL); }

TEST_F(LODTensorTester, NumElements) {
  ASSERT_EQ(lod_tensor->NumElements(0), 2UL);
  ASSERT_EQ(lod_tensor->NumElements(1), 4UL);
  ASSERT_EQ(lod_tensor->NumElements(2), 8UL);
}

65
TEST_F(LODTensorTester, SliceLevels) {
66 67
  // slice 1 level
  for (size_t level = 0; level < 3UL; ++level) {
68
    auto new_lod_tensor = lod_tensor->SliceLevels<float>(level, level + 1);
69 70
    ASSERT_EQ(new_lod_tensor.NumLevels(), 1UL);
    ASSERT_EQ(new_lod_tensor.NumElements(0UL), lod_tensor->NumElements(level));
71
    // ASSERT_EQ(new_lod_tensor, *lod_tensor);
72 73 74
  }
  // slice 2 level
  for (size_t level = 0; level < 2UL; ++level) {
75
    auto new_lod_tensor = lod_tensor->SliceLevels<float>(level, level + 2);
76 77 78 79
    ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
    ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor->NumElements(level));
    ASSERT_EQ(new_lod_tensor.NumElements(1),
              lod_tensor->NumElements(level + 1));
80
    ASSERT_EQ(new_lod_tensor.data<float>(), lod_tensor->data<float>());
81 82 83
  }
}

84
TEST_F(LODTensorTester, SliceInLevel) {
85
  size_t level = 0;
86 87 88 89 90 91
  auto new_lod_tensor = lod_tensor->SliceInLevel<float>(level, 0, 2);
  EXPECT_EQ(new_lod_tensor.NumLevels(), 3UL);
  EXPECT_EQ(new_lod_tensor.NumElements(0), 2UL);
  EXPECT_EQ(new_lod_tensor.NumElements(1), 4UL);
  EXPECT_EQ(new_lod_tensor.NumElements(2), 8UL);
  ASSERT_EQ(new_lod_tensor.data<float>(), lod_tensor->data<float>());
92 93

  level = 1;
94
  new_lod_tensor = lod_tensor->SliceInLevel<float>(level, 0, 2);
95 96 97
  ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
  ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL);
  ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL);
98
  ASSERT_EQ(new_lod_tensor.data<float>(), lod_tensor->data<float>());
99 100 101 102
}

TEST_F(LODTensorTester, ShareLOD) {
  LODTensor new_lod_tensor;
103
  new_lod_tensor.CopyLOD(*lod_tensor);
104 105 106 107 108 109
  ASSERT_EQ(new_lod_tensor.lod(), lod_tensor->lod());
}

TEST_F(LODTensorTester, CopyLOD) {
  LODTensor new_lod_tensor;
  new_lod_tensor.CopyLOD(*lod_tensor);
110 111 112
  bool equals = std::equal(lod_tensor->lod().begin(), lod_tensor->lod().end(),
                           new_lod_tensor.lod().begin());
  ASSERT_TRUE(equals);
113 114 115 116
}

}  // namespace framework
}  // namespace paddle