target_assign_op.cc 6.2 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/target_assign_op.h"
16 17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {

class TargetAssignOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
25 26
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of TargetAssignOp should not be null");
27 28
    PADDLE_ENFORCE(ctx->HasInput("MatchIndices"),
                   "Input(MatchIndices) of TargetAssignOp should not be null");
29 30 31 32 33 34 35

    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of TargetAssignOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("OutWeight"),
                   "Output(OutWeight) of TargetAssignOp should not be null.");

    auto in_dims = ctx->GetInputDim("X");
36 37
    auto mi_dims = ctx->GetInputDim("MatchIndices");

38 39
    PADDLE_ENFORCE_EQ(in_dims.size(), 3, "The rank of Input(X) must be 3.");
    PADDLE_ENFORCE_EQ(mi_dims.size(), 2,
40
                      "The rank of Input(MatchIndices) must be 2.");
41 42 43 44 45 46 47 48

    if (ctx->HasInput("NegIndices")) {
      auto neg_dims = ctx->GetInputDim("NegIndices");
      PADDLE_ENFORCE_EQ(neg_dims.size(), 2,
                        "The rank of Input(NegIndices) must be 2.");
      PADDLE_ENFORCE_EQ(neg_dims[1], 1,
                        "The last dimenstion of Out(NegIndices) must be 1.");
    }
49 50

    auto n = mi_dims[0];
51 52 53 54
    auto m = mi_dims[1];
    auto k = in_dims[in_dims.size() - 1];
    ctx->SetOutputDim("Out", {n, m, k});
    ctx->SetOutputDim("OutWeight", {n, m, 1});
55 56 57 58 59 60
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
61
        framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
62 63 64 65 66 67 68 69
        ctx.device_context());
  }
};

class TargetAssignOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  TargetAssignOpMaker(OpProto* proto, OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
70 71 72 73
    AddInput("X",
             "(LoDTensor), This input is a 3D LoDTensor with shape [M, P, K]. "
             "Some elements in X will be assigned to Out based on the "
             "MatchIndices and NegIndices.");
74
    AddInput("MatchIndices",
D
dangqingqing 已提交
75
             "(Tensor, default Tensor<int>), The input matched indices "
76 77
             "with shape [N, P], If MatchIndices[i][j] is -1, the j-th entity "
             "of column is not matched to any entity of row in i-th instance.");
78 79
    AddInput("NegIndices",
             "(LoDTensor, default LoDTensor<int>), The input negative example "
80 81 82 83 84 85
             "indices are an optional input with shape [Neg, 1], where Neg is "
             "the total number of negative example indices.")
        .AsDispensable();
    AddAttr<int>("mismatch_value",
                 "(int, default 0), Fill this value to the "
                 "mismatched location.")
86
        .SetDefault(0);
87 88 89 90 91 92 93
    AddOutput("Out",
              "(Tensor), The output is a 3D Tensor with shape [N, P, K], "
              "N and P is the same as they are in NegIndices, K is the "
              "same as it in input of X. If MatchIndices[i][j] "
              "is -1, the Out[i][j][0 : K] is the mismatch_value.");
    AddOutput("OutWeight",
              "(Tensor), The weight for output with the shape of [N, P, 1]");
94
    AddComment(R"DOC(
95 96 97 98 99 100 101 102 103
This operator can be, for given the target bounding boxes or labels,
to assign classification and regression targets to each prediction as well as
weights to prediction. The weights is used to specify which prediction would
not contribute to training loss.

For each instance, the output `Out` and`OutWeight` are assigned based on
`MatchIndices` and `NegIndices`.
Assumed that the row offset for each instance in `X` is called lod,
this operator assigns classification/regression targets by performing the
D
dangqingqing 已提交
104 105 106 107 108 109
following steps:

1. Assigning all outpts based on `MatchIndices`:

If id = MatchIndices[i][j] > 0,

110 111
    Out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
    OutWeight[i][j] = 1.
D
dangqingqing 已提交
112 113 114

Otherwise, 

115 116
    Out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
    OutWeight[i][j] = 0.
D
dangqingqing 已提交
117

118
2. Assigning OutWeight based on `NegIndices` if `NegIndices` is provided:
D
dangqingqing 已提交
119

120 121
Assumed that the row offset for each instance in `NegIndices` is called neg_lod,
for i-th instance and each `id` of NegIndices in this instance:
D
dangqingqing 已提交
122

123 124
    Out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
    OutWeight[i][id] = 1.0
125 126 127 128 129

    )DOC");
  }
};

130 131
template <typename T, typename WT>
struct NegTargetAssignFunctor<platform::CPUDeviceContext, T, WT> {
132
  void operator()(const platform::CPUDeviceContext& ctx, const int* neg_indices,
133 134 135
                  const size_t* lod, const int N, const int M, const int K,
                  const int mismatch_value, T* out, WT* out_wt) {
    for (int i = 0; i < N; ++i) {
D
dangqingqing 已提交
136
      for (size_t j = lod[i]; j < lod[i + 1]; ++j) {
137
        int id = neg_indices[j];
138 139 140 141 142
        int off = (i * M + id) * K;
        for (int k = 0; k < K; ++k) {
          out[off + k] = mismatch_value;
          out_wt[off + k] = static_cast<WT>(1.0);
        }
143 144 145 146 147
      }
    }
  }
};

148 149 150
template struct NegTargetAssignFunctor<platform::CPUDeviceContext, int, float>;
template struct NegTargetAssignFunctor<platform::CPUDeviceContext, float,
                                       float>;
151 152 153 154 155

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
156 157
REGISTER_OPERATOR(target_assign, ops::TargetAssignOp, ops::TargetAssignOpMaker,
                  paddle::framework::EmptyGradOpMaker);
158 159
REGISTER_OP_CPU_KERNEL(
    target_assign,
160 161
    ops::TargetAssignKernel<paddle::platform::CPUDeviceContext, int, float>,
    ops::TargetAssignKernel<paddle::platform::CPUDeviceContext, float, float>);