conv.py 43.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define classes of convolutional neural network
16

17
__all__ = [
W
whs 已提交
18
    'Conv1d',
19 20
    'Conv2d',
    'Conv3d',
L
LielinJiang 已提交
21 22
    'ConvTranspose2d',
    'ConvTranspose3d',
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
]

import numpy as np

from ...fluid.dygraph import layers
from ...fluid.initializer import Normal
from .. import functional as F
from ...fluid.layers import utils
from ..functional.conv import _update_padding_nd


def _get_default_param_initializer(num_channels, filter_size):
    filter_elem_num = num_channels * np.prod(filter_size)
    std = (2.0 / filter_elem_num)**0.5
    return Normal(0.0, std, 0)


40 41 42 43 44 45 46 47
def _reverse_repeat_list(t, n):
    """Reverse the order of `t` and repeat each element for `n` times.
    This can be used to translate padding arg used by Conv and Pooling modules
    to the ones used by `F.pad`.
    """
    return list(x for x in reversed(t) for _ in range(n))


L
LielinJiang 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
class _ConvNd(layers.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 transposed,
                 dims,
                 stride=1,
                 padding=0,
                 padding_mode='zeros',
                 output_padding=0,
                 dilation=1,
                 groups=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
        super(_ConvNd, self).__init__()
        assert weight_attr is not False, "weight_attr should not be False in Conv."
        self._param_attr = weight_attr
        self._bias_attr = bias_attr
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._data_format = data_format

73 74 75 76 77 78 79 80 81 82 83 84
        valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
        if padding_mode not in valid_padding_modes:
            raise ValueError(
                "padding_mode must be one of {}, but got padding_mode='{}'".
                format(valid_padding_modes, padding_mode))

        if padding_mode in {'reflect', 'replicate', 'circular'
                            } and not isinstance(padding, np.int):
            raise TypeError(
                "when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
            )

L
LielinJiang 已提交
85 86 87 88 89
        self._stride = utils.convert_to_list(stride, dims, 'stride')
        self._dilation = utils.convert_to_list(dilation, dims, 'dilation')
        self._kernel_size = utils.convert_to_list(kernel_size, dims,
                                                  'kernel_size')
        self._padding = padding
90
        self._padding_mode = padding_mode
L
LielinJiang 已提交
91 92 93 94 95 96
        self.output_padding = output_padding

        if transposed:
            filter_shape = [self._in_channels, out_channels // groups
                            ] + self._kernel_size
        else:
97 98 99 100 101 102 103 104
            if in_channels % groups != 0:
                raise ValueError("in_channels must be divisible by groups.")

            if padding_mode in {'reflect', 'replicate', 'circular'}:
                _paired_padding = utils.convert_to_list(padding, 2, 'padding')
                self._reversed_padding_repeated_twice = _reverse_repeat_list(
                    _paired_padding, 2)

L
LielinJiang 已提交
105 106 107 108 109 110 111 112 113
            filter_shape = [out_channels, in_channels // groups
                            ] + self._kernel_size

        self.weight = self.create_parameter(
            shape=filter_shape, attr=self._param_attr)
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels], is_bias=True)


W
whs 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
class Conv1d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``Conv1d`` class.
    For more details, refer to code examples.
    The convolution1D layer calculates the output based on the input, filter
    and stride, padding, dilation, groups parameters. Input and
    Output are in NCL format or NLC format, where N is batch size, C is the number of
    the feature map, L is the length of the feature map.
    Filter's shape is [MCK] , where M is the number of output feature map,
    C is the number of input feature map, K is the size of the kernel. 
    If the groups is greater than 1, C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:
    .. math::
        Out = \\sigma (W \\ast X + b)
    Where:
    * :math:`X`: Input value, a ``Tensor`` with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCK] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    Example:
        - Input:
          Input shape: :math:`(N, C_{in}, L_{in})`
          Kernel shape: :math:`(C_{out}, C_{in}, K)`
        - Output:
          Output shape: :math:`(N, C_{out}, L_{out})`
        Where
        .. math::
            L_{out}&= \\frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
    Parameters:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of filter. It is as same as the output
            feature map.
        kernel_size (int|tuple|list): The filter size. If kernel_size is a tuple,
            it must contain one integer, (kernel_size).
        stride (int|tuple|list, optional): The stride size. If stride is a tuple, it must
            contain one integer, (stride_size). Default: 1.
        padding(int|str|tuple|list, optional): The size of zeros to be padded. It must be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            The default value is 0.
        dilation (int|tuple|list, optional): The dilation size. If dilation is a tuple, it must
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        padding_mode(str, optional): Four modes: 'zeros', 'reflect', 'replicate', 'circular'.
            When in 'zeros' mode, this op uses zeros to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'zeros'.
        bias(bool, optional): Whether to use bias. Default: True.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
            of conv1d. If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv1d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
    Shape:
        - x: 3-D tensor with shape: (batch, in_channels, length) or (batch, length, in_channels).
        - output: 3-D tensor with same shape as input x.
    
    Raises:
        None
    Examples:
        .. code-block:: python
          import paddle
          from paddle.nn import Conv1d
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
          paddle.disable_static()
          x_t = paddle.to_tensor(x)
          conv = Conv1d(3, 2, 3)
          conv.weight.set_value(w)
          y_t = conv(x_t)
          y_np = y_t.numpy()
          print(y_np)
          # [[[133. 238.]
          #   [160. 211.]]]
217
    """
S
swtkiwi 已提交
218

W
whs 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 padding_mode='zeros',
                 bias=True,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCL",
                 name=None):
        super(Conv1d, self).__init__()
        assert weight_attr is not False, "param_attr should not be False here."
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._groups = groups
        if in_channels % groups != 0:
            raise ValueError("in_channels must be divisible by groups.")
        self._kernel_size = utils.convert_to_list(kernel_size, 1, 'kernel_size')
        self._stride = utils.convert_to_list(stride, 1, 'stride')
        self._dilation = utils.convert_to_list(dilation, 1, 'dilation')
        self._padding = padding  # leave it to F.conv1d
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self._data_format = data_format
        self._name = name

        self._padding_mode = padding_mode

        valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
        if padding_mode not in valid_padding_modes:
            raise ValueError(
                "padding_mode must be one of {}, but got padding_mode='{}'".
                format(valid_padding_modes, padding_mode))

        if padding_mode in {'reflect', 'replicate', 'circular'
                            } and not isinstance(padding, np.int):
            raise ValueError(
                "when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
            )
        if not isinstance(padding, str):
            self._padding = utils.convert_to_list(padding, 1, 'padding') * 2

        num_filter_channels = in_channels // groups
        filter_shape = [self._out_channels, num_filter_channels
                        ] + self._kernel_size

        self.weight = self.create_parameter(
            attr=self._weight_attr,
            shape=filter_shape,
            default_initializer=_get_default_param_initializer(
                self._in_channels, filter_shape))
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels],
            is_bias=True) if bias else None

    def forward(self, x):
        padding = 0
        if self._padding_mode != "zeros":
            x = F.pad(x,
                      self._padding,
                      mode=self._padding_mode,
                      data_format=self._data_format)
        else:
            padding = self._padding

        out = F.conv1d(
            x,
            self.weight,
            bias=self.bias,
            padding=padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format,
            name=self._name)
        return out


class Conv2d(_ConvNd):
    """
303
    This interface is used to construct a callable object of the ``Conv2d`` class.
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
    For more details, refer to code examples.
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:
    .. math::
        Out = \\sigma (W \\ast X + b)
    Where:
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    Parameters:
330 331 332 333 334 335
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by convolution.
        kernel_size (int|list|tuple): The size of convolution kernel.
        stride (int|list|tuple, optional): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
336 337 338 339 340 341 342
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding`on both sides 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
343 344
        padding_mode (str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'`` .
        dilation (int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
345 346 347 348 349 350 351
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
352
        weight_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
353 354 355 356
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
357
        bias_attr (ParamAttr|bool, optional): The attribute for the bias of conv2d.
358 359 360 361 362 363 364 365 366
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        data_format (str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
367 368 369 370 371 372 373
    Shape:
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
        Where
        .. math::
           H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel_size[0] - 1) + 1))}{strides[0]} + 1 \\\\
           W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel_size[1] - 1) + 1))}{strides[1]} + 1
374 375 376
    Examples:
        .. code-block:: python
          import numpy as np
377 378 379
    
          import paddle
          import paddle.nn as nn
380
          x = np.random.uniform(-1, 1, (2, 4, 8, 8)).astype('float32')
381 382 383 384 385 386 387
          
          paddle.disable_static()
          x_var = paddle.to_tensor(x)
          conv = nn.Conv2d(4, 6, (3, 3))
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
388 389 390 391 392
          
          # (2, 6, 6, 6)
    """

    def __init__(self,
393 394 395
                 in_channels,
                 out_channels,
                 kernel_size,
396
                 stride=1,
397
                 padding=0,
398 399
                 dilation=1,
                 groups=1,
400 401
                 padding_mode='zeros',
                 weight_attr=None,
402
                 bias_attr=None,
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
                 data_format="NCHW"):
        super(Conv2d, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            False,
            2,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
418

419 420 421 422 423 424 425 426 427 428 429 430 431 432
    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
            return F.conv2d(
                x,
                self.weight,
                bias=self.bias,
                stride=self._stride,
                dilation=self._dilation,
                groups=self._groups,
                data_format=self._data_format)
433 434

        out = F.conv2d(
435
            x,
436 437 438 439 440 441 442 443 444 445
            self.weight,
            bias=self.bias,
            padding=self._padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


L
LielinJiang 已提交
446
class ConvTranspose2d(_ConvNd):
447
    """
L
LielinJiang 已提交
448
    This interface is used to construct a callable object of the ``ConvTranspose2d`` class.
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
    For more details, refer to code examples.
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
    For each input :math:`X`, the equation is:
    .. math::
        Out = \sigma (W \\ast X + b)
    Where:
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    Example:
        - Input:
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
        - Output:
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
        Where
        .. math::
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
    Parameters:
L
LielinJiang 已提交
486 487 488 489 490 491 492
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
        kernel_size(int|list|uple): The kernel size. If kernel_size is a tuple,
            it must contain two integers, (kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
493 494 495 496 497 498 499
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` on both sides 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
L
LielinJiang 已提交
500
        stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
501 502
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
L
LielinJiang 已提交
503
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
504 505 506 507 508 509 510 511
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
L
LielinJiang 已提交
512
        weight_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
513 514 515
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
L
LielinJiang 已提交
516
        bias_attr (ParamAttr|bool, optional): The attribute for the bias of conv2d_transpose.
517 518 519 520 521 522 523 524 525
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        data_format (str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
L
LielinJiang 已提交
526 527 528 529 530 531 532
    Shape:
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
        Where
        .. math::
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel_size[0] - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel_size[1] - 1) + 1 \\\\
533 534 535
    Examples:
       .. code-block:: python
          import numpy as np
L
LielinJiang 已提交
536 537
          import paddle
          import paddle.nn as nn
538
          x = np.random.uniform(-1, 1, (2, 4, 8, 8)).astype('float32')
L
LielinJiang 已提交
539 540 541 542 543 544
          paddle.disable_static()
          x_var = paddle.to_tensor(x)
          conv = nn.ConvTranspose2d(4, 6, (3, 3))
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
545 546 547 548 549
          
          # (2, 6, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
550 551 552
                 in_channels,
                 out_channels,
                 kernel_size,
553
                 stride=1,
L
LielinJiang 已提交
554 555
                 padding=0,
                 output_padding=0,
556 557
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
558
                 weight_attr=None,
559
                 bias_attr=None,
L
LielinJiang 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
                 data_format="NCHW"):
        super(ConvTranspose2d, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            True,
            2,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x, output_size=None):
577
        if output_size is None:
L
LielinJiang 已提交
578
            output_padding = self.output_padding
579
        else:
L
LielinJiang 已提交
580
            output_padding = 0
581

L
LielinJiang 已提交
582 583
        out = F.conv_transpose2d(
            x,
584 585 586
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
587
            output_padding=output_padding,
588 589 590
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
591
            output_size=output_size,
592 593 594 595
            data_format=self._data_format)
        return out


596
class Conv3d(_ConvNd):
597
    """
598 599
    **Convlution3d Layer**
    The convolution3d layer calculates the output based on the input, filter
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
    For each input :math:`X`, the equation is:
    .. math::
        Out = \sigma (W \\ast X + b)
    In the above equation:
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    Parameters:
619 620 621 622
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
        kernel_size (int|list|tuple, optional): The size of the convolving kernel.
        stride (int|list|tuple, optional): The stride size. If stride is a tuple, it must
623 624 625 626 627 628 629 630 631
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
632
        dilation (int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
633 634 635 636 637 638 639
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups (int, optional): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
640 641
        padding_mode (str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
642 643 644 645 646 647 648 649 650 651 652 653 654 655
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
        data_format (str, optional): Data format that specifies the layout of input.
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter): the learnable bias of this layer.
656 657 658 659 660 661 662 663
    Shape:
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
        Where
        .. math::
           D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
           H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
           W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1
664 665 666 667 668 669
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python
          import numpy as np
670 671 672
          
          import paddle
          import paddle.nn as nn
673
          x = np.random.uniform(-1, 1, (2, 4, 8, 8, 8)).astype('float32')
674 675 676 677 678 679 680
          
          paddle.disable_static()
          x_var = dg.to_variable(x)
          conv = nn.Conv3d(4, 6, (3, 3, 3))
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
681 682 683 684 685
          
          # (2, 6, 6, 6, 6)
    """

    def __init__(self,
686 687 688
                 in_channels,
                 out_channels,
                 kernel_size,
689 690 691 692
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=1,
693 694
                 padding_mode='zeros',
                 weight_attr=None,
695
                 bias_attr=None,
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
                 data_format="NCDHW"):
        super(Conv3d, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            False,
            3,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
711

712 713 714 715 716 717 718 719 720 721 722 723 724 725
    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
            return F.conv3d(
                x,
                self.weight,
                bias=self.bias,
                stride=self._stride,
                dilation=self._dilation,
                groups=self._groups,
                data_format=self._data_format)
726 727

        out = F.conv3d(
728
            x,
729 730 731 732 733 734 735 736 737 738
            self.weight,
            bias=self.bias,
            padding=self._padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


L
LielinJiang 已提交
739
class ConvTranspose3d(_ConvNd):
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
    """
    **Convlution3D transpose layer**
    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    For each input :math:`X`, the equation is:
    .. math::
        Out = \sigma (W \\ast X + b)
    In the above equation:
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    Example:
    **Note**:
L
LielinJiang 已提交
765
          The conv_transpose3d can be seen as the backward of the conv3d. For conv3d, 
766
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
L
LielinJiang 已提交
767
          so for conv_transpose3d, when stride > 1, input shape maps multiple output shape.
768 769 770 771 772 773
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
L
LielinJiang 已提交
774
          conv_transpose3d can compute the kernel size automatically.
775
    Parameters:
L
LielinJiang 已提交
776 777 778 779 780 781 782 783 784
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a tuple,
            it must contain three integers, (kernel_size_D, kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
785 786 787 788 789 790 791
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
L
LielinJiang 已提交
792 793 794
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
795 796 797 798 799 800 801 802
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            The default value is 1.
L
LielinJiang 已提交
803
        weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
804 805 806 807 808 809 810 811
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
L
LielinJiang 已提交
812 813 814 815 816
        output_size(int|list|tuple, optional): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None.
817 818 819 820 821
        data_format (str, optional): Data format that specifies the layout of input.
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter): the learnable bias of this layer.
L
LielinJiang 已提交
822 823 824 825 826 827 828 829
    Shape:
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
        Where
        .. math::
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel_size[0] - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel_size[1] - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (kernel_size[2] - 1) + 1 \\\\
830 831 832 833 834 835
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
       .. code-block:: python
          import numpy as np
L
LielinJiang 已提交
836 837
          import paddle
          import paddle.nn as nn
838
          x = np.random.uniform(-1, 1, (2, 4, 8, 8, 8)).astype('float32')
L
LielinJiang 已提交
839 840 841 842 843 844 845
          
          paddle.disable_static()
          x_var = paddle.to_tensor(x)
          conv = nn.Conv3DTranspose(4, 6, (3, 3, 3))
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
846 847 848 849 850
          
          # (2, 6, 10, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
851 852 853
                 in_channels,
                 out_channels,
                 kernel_size,
854
                 stride=1,
L
LielinJiang 已提交
855 856
                 padding=0,
                 output_padding=0,
857 858
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
859
                 weight_attr=None,
860
                 bias_attr=None,
L
LielinJiang 已提交
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
                 data_format="NCDHW"):
        super(ConvTranspose3d, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            True,
            3,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x, output_size):
878
        if output_size is None:
L
LielinJiang 已提交
879
            output_padding = self.output_padding
880
        else:
L
LielinJiang 已提交
881
            output_padding = 0
882

L
LielinJiang 已提交
883 884
        out = F.conv_transpose3d(
            x,
885 886 887
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
888
            output_padding=output_padding,
889 890 891
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
892
            output_size=output_size,
893 894
            data_format=self._data_format)
        return out