mobilenetv2_test.cc 3.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <vector>
#include "paddle/fluid/lite/api/cxx_api.h"
C
Chunwei 已提交
19 20 21
#include "paddle/fluid/lite/api/paddle_use_kernels.h"
#include "paddle/fluid/lite/api/paddle_use_ops.h"
#include "paddle/fluid/lite/api/paddle_use_passes.h"
22
#include "paddle/fluid/lite/api/test_helper.h"
23 24 25 26 27 28 29 30
#include "paddle/fluid/lite/core/op_registry.h"

namespace paddle {
namespace lite {

#ifdef LITE_WITH_ARM
TEST(MobileNetV2, test) {
  DeviceInfo::Init();
31
  DeviceInfo::Global().SetRunMode(LITE_POWER_HIGH, FLAGS_threads);
C
Chunwei 已提交
32
  lite::Predictor predictor;
33 34 35 36 37 38 39 40 41
  std::vector<Place> valid_places({Place{TARGET(kHost), PRECISION(kFloat)},
                                   Place{TARGET(kARM), PRECISION(kFloat)}});

  predictor.Build(FLAGS_model_dir, Place{TARGET(kARM), PRECISION(kFloat)},
                  valid_places);

  auto* input_tensor = predictor.GetInput(0);
  input_tensor->Resize(DDim(std::vector<DDim::value_type>({1, 3, 224, 224})));
  auto* data = input_tensor->mutable_data<float>();
S
sangoly 已提交
42 43
  auto item_size = input_tensor->dims().production();
  for (int i = 0; i < item_size; i++) {
44 45 46
    data[i] = 1;
  }

47 48 49 50 51 52 53 54 55 56 57 58 59 60
  for (int i = 0; i < FLAGS_warmup; ++i) {
    predictor.Run();
  }

  auto start = GetCurrentUS();
  for (int i = 0; i < FLAGS_repeats; ++i) {
    predictor.Run();
  }

  LOG(INFO) << "================== Speed Report ===================";
  LOG(INFO) << "Model: " << FLAGS_model_dir << ", threads num " << FLAGS_threads
            << ", warmup: " << FLAGS_warmup << ", repeats: " << FLAGS_repeats
            << ", spend " << (GetCurrentUS() - start) / FLAGS_repeats / 1000.0
            << " ms in average.";
61

S
sangoly 已提交
62 63 64 65 66 67 68 69
  std::vector<std::vector<float>> results;
  // i = 1
  results.emplace_back(std::vector<float>(
      {0.00017082224, 5.699624e-05,  0.000260885,   0.00016412718,
       0.00034818667, 0.00015230637, 0.00032959113, 0.0014772735,
       0.0009059976,  9.5378724e-05, 5.386537e-05,  0.0006427285,
       0.0070957416,  0.0016094646,  0.0018807327,  0.00010506048,
       6.823785e-05,  0.00012269315, 0.0007806194,  0.00022354358}));
70 71 72 73
  auto* out = predictor.GetOutput(0);
  ASSERT_EQ(out->dims().size(), 2);
  ASSERT_EQ(out->dims()[0], 1);
  ASSERT_EQ(out->dims()[1], 1000);
S
sangoly 已提交
74 75 76 77 78 79 80 81

  int step = 50;
  for (int i = 0; i < results.size(); ++i) {
    for (int j = 0; j < results[i].size(); ++j) {
      EXPECT_NEAR(out->data<float>()[j * step + (out->dims()[1] * i)],
                  results[i][j], 1e-6);
    }
  }
82 83 84 85 86
}
#endif

}  // namespace lite
}  // namespace paddle