loss_scaler.py 19.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
from paddle.fluid import core
from paddle.fluid.dygraph import to_variable
from paddle.fluid.framework import _varbase_creator, _dygraph_tracer, dygraph_only
from paddle.fluid.data_feeder import check_type
from ...wrapped_decorator import signature_safe_contextmanager, wrap_decorator
import warnings
import numpy as np
W
wanghuancoder 已提交
23
from paddle import _C_ops
24 25
from collections import defaultdict
from enum import Enum
26

27 28 29 30 31 32 33 34 35 36 37
__all__ = ['AmpScaler', 'OptimizerState']


class OptimizerState(Enum):
    INIT = 0
    UNSCALED = 1
    STEPPED = 2


def _refresh_optimizer_state():
    return {"state": OptimizerState.INIT}
38 39 40 41 42 43 44 45


class AmpScaler(object):
    """
    :api_attr: imperative

    AmpScaler is used for Auto-Mixed-Precision training/inferring in imperative
    mode. It controls the scaling of loss, helps avoiding numerical overflow.
46
    The object of this class has seventeen methods `scale()`, `unscale_()`, `minimize()` and `get`/`set` api of parameters.
47 48

    `scale()` is used to multiply the loss by a scale ratio.
49 50
    `unscale_()` is used to unscale the gradients of parameters, multiplies the gradients of parameters by 1/(scale ratio)
    `minimize()` is similar as `optimizer.minimize()`, performs parameters updating, and it will update the loss_scaling.
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

    Commonly, it is used together with `amp_guard` to achieve Auto-Mixed-Precision in 
    imperative mode.

    Args:
        enable(bool, optional): Enable loss scaling or not. Default is True.
        init_loss_scaling (float, optional): The initial loss scaling factor. Default is 2**15.
        incr_ratio(float, optional): The multiplier to use when increasing the loss 
                        scaling. Default is 2.0.
        decr_ratio(float, optional): The less-than-one-multiplier to use when decreasing 
                        the loss scaling. Default is 0.5.
        incr_every_n_steps(int, optional): Increases loss scaling every n consecutive 
                                steps with finite gradients. Default is 1000.
        decr_every_n_nan_or_inf(int, optional): Decreases loss scaling every n 
                                    accumulated steps with nan or inf gradients. Default is 2.
        use_dynamic_loss_scaling(bool, optional): Whether to use dynamic loss scaling. If False, fixed loss_scaling is used. If True, the loss scaling is updated dynamicly. Default is True.
    Returns:
        An AmpScaler object.

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

        data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
        with fluid.dygraph.guard():
            model = fluid.dygraph.Conv2D(3, 2, 3)
            optimizer = fluid.optimizer.SGDOptimizer(
                    learning_rate=0.01, parameter_list=model.parameters())
            scaler = fluid.dygraph.AmpScaler(init_loss_scaling=1024)
            data = fluid.dygraph.to_variable(data)
            with fluid.dygraph.amp_guard():
                conv = model(data)
                loss = fluid.layers.reduce_mean(conv)
                scaled = scaler.scale(loss)
                scaled.backward()
                scaler.minimize(optimizer, scaled)         
    """

    @dygraph_only
    def __init__(self,
                 enable=True,
                 init_loss_scaling=2.**15,
                 incr_ratio=2.0,
                 decr_ratio=0.5,
                 incr_every_n_steps=1000,
                 decr_every_n_nan_or_inf=1,
                 use_dynamic_loss_scaling=True):

        tracer = _dygraph_tracer()
        if not tracer:
            raise ValueError(
                "current_tracer is None, maybe it is not in imperative mode.")

T
taixiurong 已提交
107 108
        if enable and not (tracer._expected_place.is_gpu_place() or
                           tracer._expected_place.is_xpu_place()):
109
            warnings.warn(
T
taixiurong 已提交
110
                'AmpScaler can only be enabled on CUDAPlace and XPUPlace, current place is %s, so it makes no effect.'
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
                % tracer._expected_place)
            enable = False

        self._enable = enable

        if self._enable:
            assert incr_ratio > 1.0, "The incr_ratio must be > 1.0."
            assert decr_ratio < 1.0, "The decr_ratio must be < 1.0."

            self._init_loss_scaling = init_loss_scaling
            self._incr_ratio = incr_ratio
            self._decr_ratio = decr_ratio
            self._incr_every_n_steps = incr_every_n_steps
            self._decr_every_n_nan_or_inf = decr_every_n_nan_or_inf
            self._incr_count = 0
            self._decr_count = 0
            self._use_dynamic_loss_scaling = use_dynamic_loss_scaling

            self._found_inf = to_variable(np.array([0]).astype(np.bool))
            self._scale = to_variable(
                np.array([self._init_loss_scaling]).astype(np.float32))
            self._cache_founf_inf = None
133
            self._optimizer_states = defaultdict(_refresh_optimizer_state)
134 135 136 137 138 139 140 141 142 143 144 145

    def scale(self, var):
        """
        Multiplies a variable(Tensor) by the scale factor and returns scaled outputs.  
        If this instance of :class:`AmpScaler` is not enabled, output are returned unmodified.

        Args:
            var (Variable):  The variable to scale.
        Returns:
            The scaled variable or original variable.
        
        Examples:
146

147 148
            .. code-block:: python

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
                import numpy as np
                import paddle.fluid as fluid

                data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
                with fluid.dygraph.guard():
                    model = fluid.dygraph.Conv2D(3, 2, 3)
                    optimizer = fluid.optimizer.SGDOptimizer(
                            learning_rate=0.01, parameter_list=model.parameters())
                    scaler = fluid.dygraph.AmpScaler(init_loss_scaling=1024)
                    data = fluid.dygraph.to_variable(data)
                    with fluid.dygraph.amp_guard():
                        conv = model(data)
                        loss = fluid.layers.reduce_mean(conv)
                        scaled = scaler.scale(loss)
                        scaled.backward()
                        scaler.minimize(optimizer, scaled) 
165 166 167 168 169 170 171 172 173 174 175 176 177
        """
        check_type(var, "var", core.VarBase, 'AmpScaler.scale()')

        if not self._enable:
            return var

        return var * self._scale

    def minimize(self, optimizer, *args, **kwargs):
        """
        This function is similar as `Optimizer.minimize()`, which performs parameters updating.
        
        If the scaled gradients of parameters contains NAN or INF, the parameters updating is skipped.
178
        Otherwise, if `unscale_()` has not been called, it first unscales the scaled gradients of parameters, then updates the parameters.
179 180 181 182 183 184 185 186 187

        Finally, the loss scaling ratio is updated.

        Args:
            optimizer(Optimizer):  The optimizer used to update parameters.
            args:  Arguments, which will be forward to `optimizer.minimize()`.
            kwargs: Keyword arguments, which will be forward to `Optimizer.minimize()`.

        Examples:
188

189 190
            .. code-block:: python

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
                import numpy as np
                import paddle.fluid as fluid

                data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
                with fluid.dygraph.guard():
                    model = fluid.dygraph.Conv2D(3, 2, 3)
                    optimizer = fluid.optimizer.SGDOptimizer(
                            learning_rate=0.01, parameter_list=model.parameters())
                    scaler = fluid.dygraph.AmpScaler(init_loss_scaling=1024)
                    data = fluid.dygraph.to_variable(data)
                    with fluid.dygraph.amp_guard():
                        conv = model(data)
                        loss = fluid.layers.reduce_mean(conv)
                        scaled = scaler.scale(loss)
                        scaled.backward()
                        scaler.minimize(optimizer, scaled) 
207 208 209 210
        """
        if not self._enable:
            return optimizer.minimize(*args, **kwargs)

211 212
        optimizer_state = self._optimizer_states[id(optimizer)]

213
        #  unscale the grad
214 215
        if optimizer_state["state"] is OptimizerState.INIT:
            self._unscale(optimizer)
216 217 218 219 220 221 222 223 224 225 226 227 228

        optimize_ops, params_grads = (None, None)

        if self._found_inf:
            self._cache_founf_inf = True
        else:
            optimize_ops, params_grads = optimizer.minimize(*args, **kwargs)
            self._cache_founf_inf = False

        if self._use_dynamic_loss_scaling:
            # uopdate the scale
            self._update()

229 230
        self._optimizer_states = defaultdict(_refresh_optimizer_state)

231 232 233
        return optimize_ops, params_grads

    def _unscale(self, optimizer):
234 235 236 237 238 239 240 241
        """
        Unscale the gradients of parameters, multiplies the gradients of parameters by 1/(loss scaling ratio).  
        If this instance of :class:`GradScaler` is not enabled, output are returned unmodified.
        Args:
            optimizer(Optimizer):  The optimizer used to update parameters.
        Returns:
            The unscaled parameters or original parameters.
        """
242 243
        if not self._enable:
            return
244

245 246 247 248 249 250 251 252 253
        optimizer_state = self._optimizer_states[id(optimizer)]

        if optimizer_state["state"] is OptimizerState.UNSCALED:
            raise RuntimeError(
                "unscale_() has already been called on this optimizer since the last update()."
            )
        elif optimizer_state["state"] is OptimizerState.STEPPED:
            raise RuntimeError("unscale_() is being called after step().")

254 255 256
        if getattr(optimizer, '_param_groups', None) and isinstance(
                optimizer._param_groups[0], dict):
            param_grads = []
257 258
            param_grads_fp16 = []
            param_grads_fp32 = []
259 260 261 262
            for group in optimizer._param_groups:
                for param in group['params']:
                    if param._grad_ivar() is not None:
                        param_grads.append(param._grad_ivar())
263 264 265 266 267
                        if param._grad_ivar(
                        ).dtype == core.VarDesc.VarType.FP16:
                            param_grads_fp16.append(param._grad_ivar())
                        else:
                            param_grads_fp32.append(param._grad_ivar())
268 269 270 271 272
        else:
            param_grads = [
                param._grad_ivar() for param in optimizer._parameter_list
                if param._grad_ivar() is not None
            ]
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
            param_grads_fp16 = [
                param._grad_ivar() for param in optimizer._parameter_list
                if (param._grad_ivar() is not None
                    ) and (param._grad_ivar().dtype == core.VarDesc.VarType.FP16
                           )
            ]
            param_grads_fp32 = [
                param._grad_ivar() for param in optimizer._parameter_list
                if (param._grad_ivar() is not None
                    ) and (param._grad_ivar().dtype == core.VarDesc.VarType.FP32
                           )
            ]
        temp_found_inf_fp16 = to_variable(np.array([0]).astype(np.bool))
        temp_found_inf_fp32 = to_variable(np.array([0]).astype(np.bool))
        if len(param_grads_fp16):
            _C_ops.check_finite_and_unscale(param_grads_fp16, self._scale,
                                            param_grads_fp16,
                                            temp_found_inf_fp16)
        if len(param_grads_fp32):
            _C_ops.check_finite_and_unscale(param_grads_fp32, self._scale,
                                            param_grads_fp32,
                                            temp_found_inf_fp32)
        self._found_inf = temp_found_inf_fp16 or temp_found_inf_fp32
296

297 298
        optimizer_state["state"] = OptimizerState.UNSCALED

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
    def _update(self):
        """
        Updates the loss_scaling.
        """
        if not self._enable:
            return

        if self._cache_founf_inf:
            self._incr_count = 0
            self._decr_count = self._decr_count + 1
            if self._decr_count == self._decr_every_n_nan_or_inf:
                print(
                    'Found inf or nan, current scale is: {}, decrease to: {}*{}'.
                    format(
                        float(self._scale),
                        float(self._scale), float(self._decr_ratio)))
                self._scale = self._scale * self._decr_ratio
                self._decr_count = 0
        else:
            self._decr_count = 0
            self._incr_count = self._incr_count + 1
            if self._incr_count == self._incr_every_n_steps:
                self._scale = self._scale * self._incr_ratio
                self._incr_count = 0

        return
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436

    def is_enable(self):
        """
        Enable loss scaling or not.

        Returns:
            bool: enable loss scaling return True else return False.
        """
        return self._enable

    def is_use_dynamic_loss_scaling(self):
        """
        Whether to use dynamic loss scaling.

        Returns:
            bool: if fixed loss_scaling is used return False, if the loss scaling is updated dynamicly return true.
        """
        return self._use_dynamic_loss_scaling

    def get_init_loss_scaling(self):
        """
        Return the initial loss scaling factor.

        Reurns:
            float:  the initial loss scaling factor.
        """
        return self._init_loss_scaling

    def set_init_loss_scaling(self, new_init_loss_scaling):
        """
        Set the initial loss scaling factor by `new_init_loss_scaling`.

        Args:
            new_init_loss_scaling(int):  The new_init_loss_scaling used to update initial loss scaling factor.s
        """
        self._init_loss_scaling = new_init_loss_scaling
        self._scale = to_variable(
            np.array([self._init_loss_scaling]).astype(np.float32))

    def get_incr_ratio(self):
        """
        Return the multiplier to use when increasing the loss scaling.

        Reurns:
            float:  the multiplier to use when increasing the loss scaling.
        """
        return self._incr_ratio

    def set_incr_ratio(self, new_incr_ratio):
        """
        Set the multiplier to use when increasing the loss scaling by `new_incr_ratio`, `new_incr_ratio` should > 1.0.

        Args:
            new_incr_ratio(float):  The new_incr_ratio used to update the multiplier to use when increasing the loss scaling.
        """
        assert new_incr_ratio > 1.0, "The new_incr_ratio must be > 1.0."
        self._incr_ratio = new_incr_ratio

    def get_decr_ratio(self):
        """
        Get the less-than-one-multiplier to use when decreasing the loss scaling.

        Reurns:
            float:  the less-than-one-multiplier to use when decreasing the loss scaling.
        """
        return self._decr_ratio

    def set_decr_ratio(self, new_decr_ratio):
        """
        Set the less-than-one-multiplier to use when decreasing the loss scaling by `new_incr_ratio`, `new_decr_ratio` should < 1.0.

        Args:
            new_decr_ratio(float):  The new_decr_ratio used to update the less-than-one-multiplier to use when decreasing the loss scaling.
        """
        assert new_decr_ratio < 1.0, "The new_decr_ratio must be < 1.0."
        self._decr_ratio = new_decr_ratio

    def get_incr_every_n_steps(self):
        """
        Return the num `n`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.

        Reurns:
            int:  the num `n`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.
        """
        return self._incr_every_n_steps

    def set_incr_every_n_steps(self, new_incr_every_n_steps):
        """
        Set the num `n` by `new_incr_every_n_steps`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.

        Args:
            new_incr_every_n_steps(int):  The new_incr_every_n_steps used to update the num `n`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.
        """
        self._incr_every_n_steps = new_incr_every_n_steps

    def get_decr_every_n_nan_or_inf(self):
        """
        Return the num `n`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.

        Reurns:
            int:  the num `n`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.
        """
        return self._decr_every_n_nan_or_inf

    def set_decr_every_n_nan_or_inf(self, new_decr_every_n_nan_or_inf):
        """
        Set the num `n` by `new_decr_every_n_nan_or_inf`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.

        Args:
            new_decr_every_n_nan_or_inf(int):  The new_decr_every_n_nan_or_inf used to update the num `n`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.
        """
        self._decr_every_n_nan_or_inf = new_decr_every_n_nan_or_inf
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488

    def state_dict(self):
        """
        Returns the state of the scaler as a `dict`, If this instance is not enabled, returns an empty dict.

        Reurns:
            A dict of scaler includes:
            scale (tensor): The loss scaling factor.
            incr_ratio(float): The multiplier to use when increasing the loss scaling.
            decr_ratio(float): The less-than-one-multiplier to use when decreasing the loss scaling.
            incr_every_n_steps(int): Increases loss scaling every n consecutive steps with finite gradients.
            decr_every_n_nan_or_inf(int): Decreases loss scaling every n accumulated steps with nan or inf gradients.
            incr_count(int): The number of recent consecutive unskipped steps.
            decr_count(int): The number of recent consecutive skipped steps.
            use_dynamic_loss_scaling(bool): Whether to use dynamic loss scaling. If False, fixed loss_scaling is used. If True, the loss scaling is updated dynamicly. Default is True.
        """
        return {
            "scale": self._scale.numpy(),
            "incr_ratio": self._incr_ratio,
            "decr_ratio": self._decr_ratio,
            "incr_every_n_steps": self._incr_every_n_steps,
            "decr_every_n_nan_or_inf": self._decr_every_n_nan_or_inf,
            "incr_count": self._incr_count,
            "decr_count": self._decr_count,
            "use_dynamic_loss_scaling": self._use_dynamic_loss_scaling
        } if self._enable else {}

    def load_state_dict(self, state_dict):
        """
        Loads the scaler state.
        
        Args:
           state_dict(dict): scaler state.  Should be an object returned from a call to `AmpScaler.state_dict()`.
        """
        if not self._enable:
            return

        if len(state_dict) == 0:
            raise RuntimeError(
                "The input state dict is empty, possibly because it was saved "
                "from a disabled instance of GradScaler.")

        self._init_loss_scaling = state_dict["scale"][0]
        self._scale = to_variable(
            np.array([self._init_loss_scaling]).astype(np.float32))
        self._incr_ratio = state_dict["incr_ratio"]
        self._decr_ratio = state_dict["decr_ratio"]
        self._incr_every_n_steps = state_dict["incr_every_n_steps"]
        self._decr_every_n_nan_or_inf = state_dict["decr_every_n_nan_or_inf"]
        self._incr_count = state_dict["incr_count"]
        self._decr_count = state_dict["decr_count"]
        self._use_dynamic_loss_scaling = state_dict["use_dynamic_loss_scaling"]