softmax.cc 19.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/arm/math/softmax.h"
#include <algorithm>
#include "paddle/fluid/lite/arm/math/funcs.h"

namespace paddle {
namespace lite {
namespace arm {
namespace math {

template <>
void softmax_basic<float>(const float* din, float* dout, const int axis_size,
                          const int inner_num, const int outer_num) {
  int compute_size = inner_num * outer_num;
#pragma omp parallel for
  for (int i = 0; i < compute_size; ++i) {
    int idx_inner = i % inner_num;
    int idx_outer = (i / inner_num) * axis_size;
    int real_index = idx_outer * inner_num + idx_inner;

    float max_data = din[real_index];
    // get max
    for (int j = 1; j < axis_size; ++j) {
      real_index += inner_num;
      max_data = din[real_index] > max_data ? din[real_index] : max_data;
    }

    real_index = idx_outer * inner_num + idx_inner;
    // sub, exp and sum
    dout[real_index] = expf(din[real_index] - max_data);
    float sum_data = dout[real_index];
    for (int j = 1; j < axis_size; ++j) {
      real_index += inner_num;
      dout[real_index] = expf(din[real_index] - max_data);
      sum_data += dout[real_index];
    }

    float sum_inv = 1.f / sum_data;
    real_index = idx_outer * inner_num + idx_inner;
    // get softmax result
    for (int j = 0; j < axis_size; ++j) {
      dout[real_index] *= sum_inv;
      real_index += inner_num;
    }
  }
}

template <>
void softmax_inner8_axis4<float>(const float* din, float* dout,
                                 const int axis_size, const int inner_num,
                                 const int outer_num) {
  int compute_size = inner_num * outer_num;
  int cmp_cnt = compute_size >> 3;
  int remain = compute_size % 8;
  float32x4_t vone = vdupq_n_f32(1.0f);

#pragma omp parallel for
  for (int c = 0; c < cmp_cnt; ++c) {
    int i = c * 8;
    int idx_inner = i % inner_num;
    int idx_outer = (i / inner_num) * axis_size;
    int real_index = idx_outer * inner_num + idx_inner;

    // get max axis_size == 4
    const float* din_ptr = din + real_index;
    const float* din_ptr1 = din_ptr + inner_num;
    const float* din_ptr2 = din_ptr1 + inner_num;
    const float* din_ptr3 = din_ptr2 + inner_num;
    float32x4_t vdata0 = vld1q_f32(din_ptr);
    float32x4_t vdata1 = vld1q_f32(din_ptr1);
    float32x4_t vdata2 = vld1q_f32(din_ptr2);
    float32x4_t vdata3 = vld1q_f32(din_ptr3);

    float32x4_t vdata01 = vld1q_f32(din_ptr + 4);
    float32x4_t vdata11 = vld1q_f32(din_ptr1 + 4);
    float32x4_t vdata21 = vld1q_f32(din_ptr2 + 4);
    float32x4_t vdata31 = vld1q_f32(din_ptr3 + 4);

    float* dout_ptr0 = dout + real_index;
    float* dout_ptr1 = dout_ptr0 + inner_num;
    float32x4_t vmax1 = vmaxq_f32(vdata0, vdata1);
    float32x4_t vmax2 = vmaxq_f32(vdata2, vdata3);
    float32x4_t vmax11 = vmaxq_f32(vdata01, vdata11);
    float32x4_t vmax21 = vmaxq_f32(vdata21, vdata31);
    float* dout_ptr2 = dout_ptr1 + inner_num;
    float* dout_ptr3 = dout_ptr2 + inner_num;
    float32x4_t vmax = vmaxq_f32(vmax1, vmax2);
    float32x4_t vmax_1 = vmaxq_f32(vmax11, vmax21);

    // sub, exp and sum
    float32x4_t vsum0 = exp_ps(vsubq_f32(vdata0, vmax));
    float32x4_t vsum1 = exp_ps(vsubq_f32(vdata1, vmax));
    float32x4_t vsum2 = exp_ps(vsubq_f32(vdata2, vmax));
    float32x4_t vsum3 = exp_ps(vsubq_f32(vdata3, vmax));

    float32x4_t vsum01 = exp_ps(vsubq_f32(vdata01, vmax_1));
    float32x4_t vsum11 = exp_ps(vsubq_f32(vdata11, vmax_1));
    float32x4_t vsum21 = exp_ps(vsubq_f32(vdata21, vmax_1));
    float32x4_t vsum31 = exp_ps(vsubq_f32(vdata31, vmax_1));

    float32x4_t vsum_1 = vaddq_f32(vsum0, vsum1);
    float32x4_t vsum_2 = vaddq_f32(vsum2, vsum3);
    float32x4_t vsum_11 = vaddq_f32(vsum01, vsum11);
    float32x4_t vsum_21 = vaddq_f32(vsum21, vsum31);

    float32x4_t vsum = vaddq_f32(vsum_1, vsum_2);
    float32x4_t vsum111 = vaddq_f32(vsum_11, vsum_21);

    float32x4_t vinf = div_ps(vone, vsum);
    float32x4_t vinf1 = div_ps(vone, vsum111);

    vsum0 = vmulq_f32(vsum0, vinf);
    vsum1 = vmulq_f32(vsum1, vinf);
    vsum2 = vmulq_f32(vsum2, vinf);
    vsum3 = vmulq_f32(vsum3, vinf);

    vsum01 = vmulq_f32(vsum01, vinf1);
    vsum11 = vmulq_f32(vsum11, vinf1);
    vsum21 = vmulq_f32(vsum21, vinf1);
    vsum31 = vmulq_f32(vsum31, vinf1);

    vst1q_f32(dout_ptr0, vsum0);
    vst1q_f32(dout_ptr1, vsum1);
    vst1q_f32(dout_ptr2, vsum2);
    vst1q_f32(dout_ptr3, vsum3);

    vst1q_f32(dout_ptr0 + 4, vsum01);
    vst1q_f32(dout_ptr1 + 4, vsum11);
    vst1q_f32(dout_ptr2 + 4, vsum21);
    vst1q_f32(dout_ptr3 + 4, vsum31);
  }

  int i = cmp_cnt * 8;

  if (remain > 4) {
    int idx_inner = i % inner_num;
    int idx_outer = (i / inner_num) * axis_size;
    int real_index = idx_outer * inner_num + idx_inner;
    // get max axis_size == 4
    const float* din_ptr = din + real_index;
    const float* din_ptr1 = din_ptr + inner_num;
    const float* din_ptr2 = din_ptr1 + inner_num;
    const float* din_ptr3 = din_ptr2 + inner_num;
    float32x4_t vdata0 = vld1q_f32(din_ptr);
    float32x4_t vdata1 = vld1q_f32(din_ptr1);
    float32x4_t vdata2 = vld1q_f32(din_ptr2);
    float32x4_t vdata3 = vld1q_f32(din_ptr3);

    float* dout_ptr0 = dout + real_index;
    float* dout_ptr1 = dout_ptr0 + inner_num;
    float32x4_t vmax1 = vmaxq_f32(vdata0, vdata1);
    float32x4_t vmax2 = vmaxq_f32(vdata2, vdata3);
    float* dout_ptr2 = dout_ptr1 + inner_num;
    float* dout_ptr3 = dout_ptr2 + inner_num;
    float32x4_t vmax = vmaxq_f32(vmax1, vmax2);

    // sub, exp and sum
    float32x4_t vsum0 = exp_ps(vsubq_f32(vdata0, vmax));
    float32x4_t vsum1 = exp_ps(vsubq_f32(vdata1, vmax));
    float32x4_t vsum2 = exp_ps(vsubq_f32(vdata2, vmax));
    float32x4_t vsum3 = exp_ps(vsubq_f32(vdata3, vmax));

    float32x4_t vsum_1 = vaddq_f32(vsum0, vsum1);
    float32x4_t vsum_2 = vaddq_f32(vsum2, vsum3);

    float32x4_t vsum = vaddq_f32(vsum_1, vsum_2);

    float32x4_t vone = vdupq_n_f32(1.0f);
    float32x4_t vinf = div_ps(vone, vsum);

    vsum0 = vmulq_f32(vsum0, vinf);
    vsum1 = vmulq_f32(vsum1, vinf);
    vsum2 = vmulq_f32(vsum2, vinf);
    vsum3 = vmulq_f32(vsum3, vinf);

    vst1q_f32(dout_ptr0, vsum0);
    vst1q_f32(dout_ptr1, vsum1);
    vst1q_f32(dout_ptr2, vsum2);
    vst1q_f32(dout_ptr3, vsum3);

    i += 4;
  }
  for (; i < compute_size; i++) {
    int idx_inner = i % inner_num;
    int idx_outer = (i / inner_num) * axis_size;
    int real_index = idx_outer * inner_num + idx_inner;

    float max_data = din[real_index];
    // get max
    for (int j = 1; j < axis_size; ++j) {
      real_index += inner_num;
      max_data = din[real_index] > max_data ? din[real_index] : max_data;
    }

    real_index = idx_outer * inner_num + idx_inner;
    // sub, exp and sum
    dout[real_index] = expf(din[real_index] - max_data);
    float sum_data = dout[real_index];
    for (int j = 1; j < axis_size; ++j) {
      real_index += inner_num;
      dout[real_index] = expf(din[real_index] - max_data);
      sum_data += dout[real_index];
    }

    float sum_inv = 1.f / sum_data;
    real_index = idx_outer * inner_num + idx_inner;
    // get softmax result
    for (int j = 0; j < axis_size; ++j) {
      dout[real_index] *= sum_inv;
      real_index += inner_num;
    }
  }
}

template <>
void softmax_inner4_axis4<float>(const float* din, float* dout,
                                 const int axis_size, const int inner_num,
                                 const int outer_num) {
  int compute_size = inner_num * outer_num;
  int cmp_cnt = compute_size >> 2;
  int remain = compute_size % 4;
  float32x4_t vone = vdupq_n_f32(1.0f);

#pragma omp parallel for
  for (int c = 0; c < cmp_cnt; ++c) {
    int i = c * 4;
    int idx_inner = i % inner_num;
    int idx_outer = (i / inner_num) * axis_size;
    int real_index = idx_outer * inner_num + idx_inner;

    // get max axis_size == 4
    const float* din_ptr = din + real_index;
    const float* din_ptr1 = din_ptr + inner_num;
    const float* din_ptr2 = din_ptr1 + inner_num;
    const float* din_ptr3 = din_ptr2 + inner_num;
    float32x4_t vdata0 = vld1q_f32(din_ptr);
    float32x4_t vdata1 = vld1q_f32(din_ptr1);
    float32x4_t vdata2 = vld1q_f32(din_ptr2);
    float32x4_t vdata3 = vld1q_f32(din_ptr3);

    float* dout_ptr0 = dout + real_index;
    float* dout_ptr1 = dout_ptr0 + inner_num;
    float32x4_t vmax1 = vmaxq_f32(vdata0, vdata1);
    float32x4_t vmax2 = vmaxq_f32(vdata2, vdata3);
    float* dout_ptr2 = dout_ptr1 + inner_num;
    float* dout_ptr3 = dout_ptr2 + inner_num;
    float32x4_t vmax = vmaxq_f32(vmax1, vmax2);

    // sub, exp and sum
    float32x4_t vsum0 = exp_ps(vsubq_f32(vdata0, vmax));
    float32x4_t vsum1 = exp_ps(vsubq_f32(vdata1, vmax));
    float32x4_t vsum2 = exp_ps(vsubq_f32(vdata2, vmax));
    float32x4_t vsum3 = exp_ps(vsubq_f32(vdata3, vmax));

    float32x4_t vsum_1 = vaddq_f32(vsum0, vsum1);
    float32x4_t vsum_2 = vaddq_f32(vsum2, vsum3);

    float32x4_t vsum = vaddq_f32(vsum_1, vsum_2);

    float32x4_t vinf = div_ps(vone, vsum);

    vsum0 = vmulq_f32(vsum0, vinf);
    vsum1 = vmulq_f32(vsum1, vinf);
    vsum2 = vmulq_f32(vsum2, vinf);
    vsum3 = vmulq_f32(vsum3, vinf);

    vst1q_f32(dout_ptr0, vsum0);
    vst1q_f32(dout_ptr1, vsum1);
    vst1q_f32(dout_ptr2, vsum2);
    vst1q_f32(dout_ptr3, vsum3);
  }

  int i = cmp_cnt * 8;
  for (; i < compute_size; i++) {
    int idx_inner = i % inner_num;
    int idx_outer = (i / inner_num) * axis_size;
    int real_index = idx_outer * inner_num + idx_inner;

    float max_data = din[real_index];
    // get max
    for (int j = 1; j < axis_size; ++j) {
      real_index += inner_num;
      max_data = din[real_index] > max_data ? din[real_index] : max_data;
    }

    real_index = idx_outer * inner_num + idx_inner;
    // sub, exp and sum
    dout[real_index] = expf(din[real_index] - max_data);
    float sum_data = dout[real_index];
    for (int j = 1; j < axis_size; ++j) {
      real_index += inner_num;
      dout[real_index] = expf(din[real_index] - max_data);
      sum_data += dout[real_index];
    }

    float sum_inv = 1.f / sum_data;
    real_index = idx_outer * inner_num + idx_inner;
    // get softmax result
    for (int j = 0; j < axis_size; ++j) {
      dout[real_index] *= sum_inv;
      real_index += inner_num;
    }
  }
}

template <>
void softmax_inner8<float>(const float* din, float* dout, const int axis_size,
                           const int inner_num, const int outer_num) {
  int compute_size = inner_num * outer_num;
  int cmp_cnt = compute_size >> 3;
#pragma omp parallel for
  for (int c = 0; c < cmp_cnt; ++c) {
    int i = c * 8;
    int idx_inner = i % inner_num;
    int idx_outer = (i / inner_num) * axis_size;
    int real_index = idx_outer * inner_num + idx_inner;

    const float* din_ptr = din + real_index;
    float32x4_t vmax = vld1q_f32(din_ptr);
    float32x4_t vmax2 = vld1q_f32(din_ptr + 4);
    // get max
    for (int j = 1; j < axis_size; ++j) {
      din_ptr += inner_num;
      float32x4_t vdata = vld1q_f32(din_ptr);
      float32x4_t vdata2 = vld1q_f32(din_ptr + 4);
      vmax = vmaxq_f32(vmax, vdata);
      vmax2 = vmaxq_f32(vmax2, vdata2);
    }

    // sub, exp and sum
    din_ptr = din + real_index;
    float* dout_ptr = dout + real_index;
    float32x4_t vdata = vld1q_f32(din_ptr);
    float32x4_t vdata2 = vld1q_f32(din_ptr + 4);
    float32x4_t vsum = exp_ps(vsubq_f32(vdata, vmax));
    float32x4_t vsum2 = exp_ps(vsubq_f32(vdata2, vmax2));
    din_ptr += inner_num;
    vst1q_f32(dout_ptr, vsum);
    vst1q_f32(dout_ptr + 4, vsum2);
    dout_ptr += inner_num;
    for (int j = 1; j < axis_size; ++j) {
      float32x4_t vdata0 = vld1q_f32(din_ptr);
      float32x4_t vdata1 = vld1q_f32(din_ptr + 4);
      vdata0 = exp_ps(vsubq_f32(vdata0, vmax));
      vdata1 = exp_ps(vsubq_f32(vdata1, vmax2));
      din_ptr += inner_num;
      vsum = vaddq_f32(vsum, vdata0);
      vsum2 = vaddq_f32(vsum2, vdata1);
      vst1q_f32(dout_ptr, vdata0);
      vst1q_f32(dout_ptr + 4, vdata1);
      dout_ptr += inner_num;
    }

    float32x4_t vone = vdupq_n_f32(1.0f);
    float32x4_t vinf = div_ps(vone, vsum);
    float32x4_t vinf2 = div_ps(vone, vsum2);
    dout_ptr = dout + real_index;
    // get softmax result
    for (int j = 0; j < axis_size; ++j) {
      float32x4_t vdata0 = vld1q_f32(dout_ptr);
      float32x4_t vdata1 = vld1q_f32(dout_ptr + 4);
      vdata0 = vmulq_f32(vdata0, vinf);
      vdata1 = vmulq_f32(vdata1, vinf2);
      vst1q_f32(dout_ptr, vdata0);
      vst1q_f32(dout_ptr + 4, vdata1);
      dout_ptr += inner_num;
    }
  }

  for (int i = cmp_cnt * 8; i < compute_size; i++) {
    int idx_inner = i % inner_num;
    int idx_outer = (i / inner_num) * axis_size;
    int real_index = idx_outer * inner_num + idx_inner;

    float max_data = din[real_index];
    // get max
    for (int j = 1; j < axis_size; ++j) {
      real_index += inner_num;
      max_data = din[real_index] > max_data ? din[real_index] : max_data;
    }

    real_index = idx_outer * inner_num + idx_inner;
    // sub, exp and sum
    dout[real_index] = expf(din[real_index] - max_data);
    float sum_data = dout[real_index];
    for (int j = 1; j < axis_size; ++j) {
      real_index += inner_num;
      dout[real_index] = expf(din[real_index] - max_data);
      sum_data += dout[real_index];
    }

    float sum_inv = 1.f / sum_data;
    real_index = idx_outer * inner_num + idx_inner;
    // get softmax result
    for (int j = 0; j < axis_size; ++j) {
      dout[real_index] *= sum_inv;
      real_index += inner_num;
    }
  }
}

template <>
void softmax_inner4<float>(const float* din, float* dout, const int axis_size,
                           const int inner_num, const int outer_num) {
  int compute_size = inner_num * outer_num;
  int cmp_cnt = compute_size >> 2;
#pragma omp parallel for
  for (int c = 0; c < cmp_cnt; ++c) {
    int i = c * 4;
    int idx_inner = i % inner_num;
    int idx_outer = (i / inner_num) * axis_size;
    int real_index = idx_outer * inner_num + idx_inner;

    // float max_data = din[real_index];
    const float* din_ptr = din + real_index;
    float32x4_t vmax = vld1q_f32(din_ptr);
    // get max
    for (int j = 1; j < axis_size; ++j) {
      din_ptr += inner_num;
      float32x4_t vdata = vld1q_f32(din_ptr);
      vmax = vmaxq_f32(vmax, vdata);
    }
    // sub, exp and sum
    din_ptr = din + real_index;
    float* dout_ptr = dout + real_index;
    float32x4_t vdata = vld1q_f32(din_ptr);
    float32x4_t vsum = exp_ps(vsubq_f32(vdata, vmax));
    din_ptr += inner_num;
    vst1q_f32(dout_ptr, vsum);
    dout_ptr += inner_num;
    for (int j = 1; j < axis_size; ++j) {
      // real_index += inner_num;
      float32x4_t vdata0 = vld1q_f32(din_ptr);
      vdata0 = exp_ps(vsubq_f32(vdata0, vmax));
      din_ptr += inner_num;
      vsum = vaddq_f32(vsum, vdata0);
      vst1q_f32(dout_ptr, vdata0);
      dout_ptr += inner_num;
    }

    float32x4_t vone = vdupq_n_f32(1.0f);
    float32x4_t vinf = div_ps(vone, vsum);
    dout_ptr = dout + real_index;
    // get softmax result
    for (int j = 0; j < axis_size; ++j) {
      float32x4_t vdata0 = vld1q_f32(dout_ptr);
      vdata0 = vmulq_f32(vdata0, vinf);
      vst1q_f32(dout_ptr, vdata0);
      dout_ptr += inner_num;
    }
  }

  for (int i = cmp_cnt * 4; i < compute_size; i++) {
    int idx_inner = i % inner_num;
    int idx_outer = (i / inner_num) * axis_size;
    int real_index = idx_outer * inner_num + idx_inner;

    float max_data = din[real_index];
    // get max
    for (int j = 1; j < axis_size; ++j) {
      real_index += inner_num;
      max_data = din[real_index] > max_data ? din[real_index] : max_data;
    }

    real_index = idx_outer * inner_num + idx_inner;
    // sub, exp and sum
    dout[real_index] = expf(din[real_index] - max_data);
    float sum_data = dout[real_index];
    for (int j = 1; j < axis_size; ++j) {
      real_index += inner_num;
      dout[real_index] = expf(din[real_index] - max_data);
      sum_data += dout[real_index];
    }

    float sum_inv = 1.f / sum_data;
    real_index = idx_outer * inner_num + idx_inner;
    // get softmax result
    for (int j = 0; j < axis_size; ++j) {
      dout[real_index] *= sum_inv;
      real_index += inner_num;
    }
  }
}

template <>
void softmax_inner1_large_axis<float>(const float* din, float* dout,
                                      const int outer_size,
                                      const int axis_size) {
#pragma omp parallel for
  for (int i = 0; i < outer_size; ++i) {
    const float* din_ptr = din + i * axis_size;
    float* dout_ptr = dout + i * axis_size;

    const float* din_max_ptr = din_ptr;
    int nn = axis_size >> 2;

    // get max
    float32x4_t vmax = vld1q_f32(din_max_ptr);
    din_max_ptr += 4;
    int j = 1;
    for (; j < nn; ++j) {
      vmax = vmaxq_f32(vmax, vld1q_f32(din_max_ptr));
      din_max_ptr += 4;
    }
    float32x2_t vhmax = vmax_f32(vget_high_f32(vmax), vget_low_f32(vmax));
    float max_data = std::max(vget_lane_f32(vhmax, 0), vget_lane_f32(vhmax, 1));
    for (j = 4 * j; j < axis_size; ++j) {
      max_data = std::max(max_data, din_max_ptr[0]);
      din_max_ptr++;
    }

    // sub, exp and sum
    const float* din_sum_ptr = din_ptr;
    float* dout_sum_ptr = dout_ptr;
    vmax = vdupq_n_f32(max_data);
    float32x4_t vsub_exp = exp_ps(vsubq_f32(vld1q_f32(din_sum_ptr), vmax));
    float32x4_t vsum = vsub_exp;
    vst1q_f32(dout_sum_ptr, vsub_exp);
    din_sum_ptr += 4;
    dout_sum_ptr += 4;

    j = 1;
    for (; j < nn; ++j) {
      vsub_exp = exp_ps(vsubq_f32(vld1q_f32(din_sum_ptr), vmax));
      vst1q_f32(dout_sum_ptr, vsub_exp);
      vsum = vaddq_f32(vsum, vsub_exp);
      din_sum_ptr += 4;
      dout_sum_ptr += 4;
    }
    float32x2_t vhsum = vadd_f32(vget_high_f32(vsum), vget_low_f32(vsum));
    float sum_data = vget_lane_f32(vhsum, 0) + vget_lane_f32(vhsum, 1);

    for (j = 4 * j; j < axis_size; ++j) {
      dout_sum_ptr[0] = expf(din_sum_ptr[0] - max_data);
      sum_data += dout_sum_ptr[0];
      din_sum_ptr++;
      dout_sum_ptr++;
    }

    float sum_inv = 1.f / sum_data;
    float* dout_res_ptr = dout_ptr;
    float32x4_t vinv = vdupq_n_f32(sum_inv);
    // get softmax result
    j = 0;
    for (; j < nn; ++j) {
      float32x4_t vout = vld1q_f32(dout_res_ptr);
      float32x4_t vres = vmulq_f32(vout, vinv);
      vst1q_f32(dout_res_ptr, vres);
      dout_res_ptr += 4;
    }
    for (j = nn * 4; j < axis_size; ++j) {
      dout_ptr[j] *= sum_inv;
    }
  }
}

template <>
void softmax_inner1_small_axis<float>(const float* din, float* dout,
                                      const int outer_size,
                                      const int axis_size) {
#pragma omp parallel for
  for (int i = 0; i < outer_size; ++i) {
    const float* din_ptr = din + i * axis_size;
    float* dout_ptr = dout + i * axis_size;
    // get max
    float max_data = din_ptr[0];
    for (int j = 1; j < axis_size; ++j) {
      max_data = std::max(max_data, din_ptr[j]);
    }

    // sub, exp and sum
    float sum_data = 0.f;
    for (int j = 0; j < axis_size; ++j) {
      dout_ptr[j] = expf(din_ptr[j] - max_data);
      sum_data += dout_ptr[j];
    }

    float sum_inv = 1.f / sum_data;
    for (int j = 0; j < axis_size; ++j) {
      dout_ptr[j] *= sum_inv;
    }
  }
}

}  // namespace math
}  // namespace arm
}  // namespace lite
}  // namespace paddle