gan_api.md 4.8 KB
Newer Older
Z
zchen0211 已提交
1 2 3
'''
GAN implementation, just a demo.
'''
Z
gan api  
zchen0211 已提交
4
```python
Z
zchen0211 已提交
5 6 7 8 9 10
# pd for short, should be more concise.
from paddle.v2 as pd
import numpy as np
import logging

X = pd.data(pd.float_vector(784))
Z
gan api  
zchen0211 已提交
11
```
Z
zchen0211 已提交
12 13
# Conditional-GAN should be a class. 
### Class member function: the initializer.
Z
gan api  
zchen0211 已提交
14
```python
Z
zchen0211 已提交
15 16 17 18 19 20 21 22 23
class DCGAN(object):
  def __init__(self, y_dim=None):
  
    # hyper parameters  
    self.y_dim = y_dim # conditional gan or not
    self.batch_size = 100
    self.z_dim = z_dim # input noise dimension

    # define parameters of discriminators
Z
gan api  
zchen0211 已提交
24 25
    self.D_W0 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
    self.D_b0 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
Z
zchen0211 已提交
26 27 28 29
    self.D_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
    self.D_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
    self.D_W2 = pd.Varialble(np.random.rand(128, 1))
    self.D_b2 = pd.Variable(np.zeros(128))
Z
gan api  
zchen0211 已提交
30
    self.theta_D = [self.D_W0, self.D_b0, self.D_W1, self.D_b1, self.D_W2, self.D_b2]
Z
zchen0211 已提交
31 32

    # define parameters of generators
Z
gan api  
zchen0211 已提交
33 34
    self.G_W0 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
    self.G_b0 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
Z
zchen0211 已提交
35 36 37 38
    self.G_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
    self.G_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
    self.G_W2 = pd.Varialble(np.random.rand(128, 1))
    self.G_b2 = pd.Variable(np.zeros(128))
Z
gan api  
zchen0211 已提交
39 40
    self.theta_G = [self.G_W0, self.G_b0, self.G_W1, self.G_b1, self.G_W2, self.G_b2]
```
Z
zchen0211 已提交
41 42

### Class member function: Generator Net
Z
gan api  
zchen0211 已提交
43
```python
Z
zchen0211 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
def generator(self, z, y = None):

    # Generator Net
    if not self.y_dim:
      z = pd.concat(1, [z, y])
      
    G_h0 = pd.fc(z, self.G_w0, self.G_b0)
    G_h0_bn = pd.batch_norm(G_h0)
    G_h0_relu = pd.relu(G_h0_bn)
    
    G_h1 = pd.fc(G_h0_relu, self.G_w1, self.G_b1)
    G_h1_bn = pd.batch_norm(G_h1)
    G_h1_relu = pd.relu(G_h1_bn)
    
    G_h2 = pd.deconv(G_h1_relu, self.G_W2, self.G_b2))
    G_im = pd.tanh(G_im)
    return G_im
Z
gan api  
zchen0211 已提交
61 62
```

Z
zchen0211 已提交
63
### Class member function: Discriminator Net
Z
gan api  
zchen0211 已提交
64
```python
Z
zchen0211 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77
def discriminator(self, image):

    # Discriminator Net
    D_h0 = pd.conv2d(image, self.D_w0, self.D_b0)
    D_h0_bn = pd.batchnorm(h0)
    D_h0_relu = pd.lrelu(h0_bn)
    
    D_h1 = pd.conv2d(D_h0_relu, self.D_w1, self.D_b1)
    D_h1_bn = pd.batchnorm(D_h1)
    D_h1_relu = pd.lrelu(D_h1_bn)
    
    D_h2 = pd.fc(D_h1_relu, self.D_w2, self.D_b2)
    return D_h2
Z
gan api  
zchen0211 已提交
78
```
Z
zchen0211 已提交
79 80

### Class member function: Build the model
Z
gan api  
zchen0211 已提交
81
```python
Z
zchen0211 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
def build_model(self):

    # input data
    if self.y_dim:
        self.y = pd.data(pd.float32, [self.batch_size, self.y_dim])
    self.images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
    self.faked_images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
    self.z = pd.data(tf.float32, [None, self.z_size])
    
    # if conditional GAN
    if self.y_dim:
      self.G = self.generator(self.z, self.y)
      self.D_t = self.discriminator(self.images)
      # generated fake images
      self.sampled = self.sampler(self.z, self.y)
      self.D_f = self.discriminator(self.images)
    else: # original version of GAN
      self.G = self.generator(self.z)
      self.D_t = self.discriminator(self.images)
      # generate fake images
      self.sampled = self.sampler(self.z)
      self.D_f = self.discriminator(self.images)
    
    self.d_loss_real = pd.reduce_mean(pd.cross_entropy(self.D_t, np.ones(self.batch_size))
    self.d_loss_fake = pd.reduce_mean(pd.cross_entropy(self.D_f, np.zeros(self.batch_size))
    self.d_loss = self.d_loss_real + self.d_loss_fake
    
    self.g_loss = pd.reduce_mean(pd.cross_entropy(self.D_f, np.ones(self.batch_szie))
Z
gan api  
zchen0211 已提交
110
```
Z
zchen0211 已提交
111 112

# Main function for the demo:
Z
gan api  
zchen0211 已提交
113
```python
Z
zchen0211 已提交
114 115 116 117 118 119 120 121 122 123
if __name__ == "__main__":

    # dcgan
    dcgan = DCGAN()
    dcgan.build_model()

    # load mnist data
    data_X, data_y = self.load_mnist()
    
    # Two subgraphs required!!!
Z
gan api  
zchen0211 已提交
124
    d_optim = pd.train.Adam(lr = .001, beta= .1).minimize(self.d_loss, )
Z
zchen0211 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    g_optim = pd.train.Adam(lr = .001, beta= .1).minimize(self.g_loss)

    # executor
    sess = pd.executor()
    
    # training
    for epoch in xrange(10000):
      for batch_id in range(N / batch_size):
        idx = ...
        # sample a batch
        batch_im, batch_label = data_X[idx:idx+batch_size], data_y[idx:idx+batch_size]
        # sample z
        batch_z = np.random.uniform(-1., 1., [batch_size, z_dim])

        if batch_id % 2 == 0:
Z
gan api  
zchen0211 已提交
140
          sess.eval(d_optim, 
Z
zchen0211 已提交
141 142 143 144
                   feed_dict = {dcgan.images: batch_im,
                                dcgan.y: batch_label,
                                dcgan.z: batch_z})
        else:
Z
gan api  
zchen0211 已提交
145
          sess.eval(g_optim,
Z
zchen0211 已提交
146
                   feed_dict = {dcgan.z: batch_z})
Z
gan api  
zchen0211 已提交
147
```