squeeze_op.cc 11.1 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include <vector>
Y
yuyang18 已提交
17
#include "paddle/fluid/framework/op_registry.h"
18 19 20 21

namespace paddle {
namespace operators {

Y
yuyang18 已提交
22
class SqueezeOpInferShape : public framework::InferShapeBase {
23
 public:
Y
yuyang18 已提交
24
  void operator()(framework::InferShapeContext *ctx) const override {
25
    PADDLE_ENFORCE(ctx->HasInput("X"),
26
                   "Input(X) of Squeeze operator should not be null.");
27
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
28
                   "Output(Out) of Squeeze operator should not be null.");
29

Y
yuyang18 已提交
30
    const auto &x_dims = ctx->GetInputDim("X");
31 32
    // Check input tensor dims (<6) Eigen limit.
    PADDLE_ENFORCE(x_dims.size() <= 6,
33 34
                   "Invalid dimnesions, the rank of Input(X) "
                   "should be in the range of [1, 6] (Eigen limit).");
35

Y
yuyang18 已提交
36
    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
37 38
    for (int a : axes) {
      PADDLE_ENFORCE_LT(a, x_dims.size(),
39 40
                        "The squeeze axis should be less than input "
                        "tensor's rank.");
41 42
    }

43
    auto out_dims = GetOutputShape(axes, x_dims, false);
44
    ctx->SetOutputDim("Out", out_dims);
45 46 47 48 49
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
50 51 52
  }

  static framework::DDim GetOutputShape(const std::vector<int> squeeze_dims,
53 54
                                        const framework::DDim &in_dims,
                                        bool is_runtime) {
55
    size_t num_squeeze_dims = squeeze_dims.size();
56 57 58 59 60 61
    int cnt_squeezed_dims = 0;
    bool should_squeeze[9] = {false};

    // Determines number of dimensions of output tensor after squeeze.
    // Mark and count the dimensions need to be squeezed
    if (num_squeeze_dims == 0) {
62
      for (int idx = 0; idx < in_dims.size(); ++idx) {
63 64 65 66 67 68
        if (in_dims[idx] == 1) {
          should_squeeze[idx] = true;
          ++cnt_squeezed_dims;
        }
      }
    } else {
69
      for (size_t idx = 0; idx < num_squeeze_dims; ++idx) {
70 71
        int current = squeeze_dims[idx] < 0 ? squeeze_dims[idx] + in_dims.size()
                                            : squeeze_dims[idx];
72
        // Check current index, the upper limit has beed checked in line 36.
73
        PADDLE_ENFORCE(current >= 0,
74
                       "Invalid axis, the negative axis is out of range.");
75 76 77 78 79 80

        if (is_runtime) {
          PADDLE_ENFORCE(in_dims[current] == 1,
                         "Invalid axis index, the axis that will be squeezed "
                         "should be equal to 1.");
        }
81 82 83 84

        if (!(should_squeeze[current])) {
          ++cnt_squeezed_dims;
        }
85 86 87 88 89 90
        should_squeeze[current] = true;
      }
    }

    // Make output dimensions
    std::vector<int64_t> output_shape(in_dims.size() - cnt_squeezed_dims, 0);
91
    for (int in_idx = 0, out_idx = 0; in_idx < in_dims.size(); ++in_idx) {
92 93 94 95 96 97 98 99 100
      if (!should_squeeze[in_idx]) {
        output_shape[out_idx++] = in_dims[in_idx];
      }
    }

    return framework::make_ddim(output_shape);
  }
};

Y
yuyang18 已提交
101 102
class SqueezeOp : public framework::OperatorBase {
 public:
C
chenweihang 已提交
103
  using OperatorBase::OperatorBase;
Y
yuyang18 已提交
104 105 106 107 108 109

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
    auto &axes = Attr<std::vector<int>>("axes");
    auto x_dims = scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
110
    auto out_dims = SqueezeOpInferShape::GetOutputShape(axes, x_dims, true);
Y
yuyang18 已提交
111 112 113 114 115 116 117 118 119 120 121

    framework::AttributeMap attrs;
    attrs["shape"] = framework::vectorize2int(out_dims);
    // Invoke Reshape Op
    auto reshape_op = framework::OpRegistry::CreateOp(
        "reshape", {{"X", {Input("X")}}, {"Shape", {}}},
        {{"Out", {Output("Out")}}}, attrs);
    reshape_op->Run(scope, place);
  }
};

122 123 124
class SqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
125 126
    AddInput("X", "(Tensor). The input tensor of squeeze operator.");
    AddOutput("Out", "(Tensor). The output tensor of squeeze operator.");
127
    AddAttr<std::vector<int>>("axes",
128
                              "(std::vector<int>). List of integers,"
129
                              " indicating the dimensions to squeeze.")
130
        .SetDefault({});
131
    AddComment(R"DOC(
Y
yuyang18 已提交
132
        Squeeze Operator.
133 134 135 136

        Remove single-dimensional entries from the shape of a tensor.
        Takes a parameter axes with a list of axes to squeeze.
        If axes is not provided, all the single dimensions will be removed from the shape.
137
        If an axis is selected with shape entry not equal to one, an error is raised.
138

Y
yuyang18 已提交
139 140
        Examples:
        Case 1:
141
          Given
Y
yuyang18 已提交
142 143 144 145 146 147 148 149 150
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:
          Given
            X.shape = (1, 3, 1, 5)
151
          and
152
            axes = []
Y
yuyang18 已提交
153 154
          we get:
            Out.shape = (3, 5)
155 156 157 158
    )DOC");
  }
};

Y
yuyang18 已提交
159
class SqueezeGradInferShape : public framework::InferShapeBase {
160
 public:
Y
yuyang18 已提交
161 162 163 164
  void operator()(framework::InferShapeContext *context) const override {
    context->SetOutputDim(framework::GradVarName("X"),
                          context->GetInputDim("X"));
    context->ShareLoD("X", framework::GradVarName("X"));
165
  }
Y
yuyang18 已提交
166
};
167

Y
yuyang18 已提交
168 169
class SqueezeGradOp : public framework::OperatorBase {
 public:
C
chenweihang 已提交
170
  using OperatorBase::OperatorBase;
Y
yuyang18 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
    auto dx_name = Output(framework::GradVarName("X"));
    auto dout_name = Input(framework::GradVarName("Out"));
    auto x_dims = scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
    framework::AttributeMap attrs;
    attrs["shape"] = framework::vectorize2int(x_dims);

    auto reshape_op = framework::OpRegistry::CreateOp(
        "reshape", {{"X", {dout_name}}, {"Shape", {}}}, {{"Out", {dx_name}}},
        attrs);
    reshape_op->Run(scope, place);
185 186 187
  }
};

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
// FIXME(zcd): squeeze2 adds an intermediate output(XShape) based on squeeze,
// the XShape is used to carry the shape and lod of X which will be used in
// squeeze_grad, in this way, the framework can reuse the memory of X
// immediately the squeeze2_op is finished.
// Considering compatibility issues, we could not fix squeeze2_op
class Squeeze2OpMaker : public SqueezeOpMaker {
 public:
  void Make() override {
    SqueezeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in SqueezeGradOp.")
        .AsIntermediate();
  }
};

class Squeeze2OpInferShape : public SqueezeOpInferShape {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
    SqueezeOpInferShape::operator()(ctx);
    PADDLE_ENFORCE(ctx->HasOutput("XShape"),
                   "Output(XShape) of Squeeze operator should not be null.");
    const auto &x_dims = ctx->GetInputDim("X");
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", /*->*/ "XShape");
  }
};

class Squeeze2Op : public framework::OperatorBase {
 public:
  using OperatorBase::OperatorBase;

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
    auto &axes = Attr<std::vector<int>>("axes");
    auto x_dims = scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
230
    auto out_dims = Squeeze2OpInferShape::GetOutputShape(axes, x_dims, true);
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

    framework::AttributeMap attrs;
    attrs["shape"] = framework::vectorize2int(out_dims);
    // Invoke Reshape Op
    auto reshape_op = framework::OpRegistry::CreateOp(
        "reshape2", {{"X", {Input("X")}}, {"Shape", {}}},
        {{"Out", {Output("Out")}}, {"XShape", {Output("XShape")}}}, attrs);
    reshape_op->Run(scope, place);
  }
};

class Squeeze2GradOpMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *grad_op = new framework::OpDesc();
    grad_op->SetType("squeeze2_grad");
    grad_op->SetInput("XShape", Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    grad_op->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDesc>(grad_op);
  }
};

class Squeeze2GradInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE(context->HasInput("XShape"),
                   "Input(XShape) shouldn't be null.");
    PADDLE_ENFORCE(context->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) shouldn't be null.");
    auto xshape_dims = context->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
    context->ShareLoD("XShape", framework::GradVarName("X"));
  }
};

class Squeeze2GradOp : public framework::OperatorBase {
 public:
  using OperatorBase::OperatorBase;

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
    auto dx_name = Output(framework::GradVarName("X"));
    auto dout_name = Input(framework::GradVarName("Out"));
    auto xshape_name = Input("XShape");
    auto xshape_dims =
        scope.FindVar(xshape_name)->Get<framework::LoDTensor>().dims();
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());

    framework::AttributeMap attrs;
    attrs["shape"] = framework::vectorize2int(x_dims);

    auto reshape_op = framework::OpRegistry::CreateOp(
        "reshape2", {{"X", {dout_name}}, {"Shape", {}}},
        {{"Out", {dx_name}}, {"XShape", {xshape_name}}}, attrs);
    reshape_op->Run(scope, place);
  }
};

295 296 297
}  // namespace operators
}  // namespace paddle

Y
yuyang18 已提交
298 299 300
// Tell linker to use reshape op
USE_OP(reshape);

301 302
namespace ops = paddle::operators;
REGISTER_OPERATOR(squeeze, ops::SqueezeOp, ops::SqueezeOpMaker,
Y
yuyang18 已提交
303
                  ops::SqueezeOpInferShape,
304
                  paddle::framework::DefaultGradOpDescMaker<true>);
Y
yuyang18 已提交
305
REGISTER_OPERATOR(squeeze_grad, ops::SqueezeGradOp, ops::SqueezeGradInferShape);
306 307 308 309 310

REGISTER_OPERATOR(squeeze2, ops::Squeeze2Op, ops::Squeeze2OpMaker,
                  ops::Squeeze2OpInferShape, ops::Squeeze2GradOpMaker);
REGISTER_OPERATOR(squeeze2_grad, ops::Squeeze2GradOp,
                  ops::Squeeze2GradInferShape);