box_coder_op.h 6.3 KB
Newer Older
G
gaoyuan 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
G
gaoyuan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

enum class BoxCodeType { kEncodeCenterSize = 0, kDecodeCenterSize = 1 };

inline BoxCodeType GetBoxCodeType(const std::string& type) {
  if (type == "encode_center_size") {
    return BoxCodeType::kEncodeCenterSize;
  } else if (type == "decode_center_size") {
    return BoxCodeType::kDecodeCenterSize;
  }
  PADDLE_THROW("Not support type %s.", type);
}

template <typename T>
class BoxCoderKernel : public framework::OpKernel<T> {
 public:
  void EncodeCenterSize(const Tensor& target_box, const Tensor& prior_box,
                        const Tensor& prior_box_var, T* output) const {
    int64_t row = target_box.dims()[0];
    int64_t col = prior_box.dims()[0];
G
gaoyuan 已提交
40
    int64_t len = prior_box.dims()[1];
G
gaoyuan 已提交
41 42 43 44 45 46
    auto* target_box_data = target_box.data<T>();
    auto* prior_box_data = prior_box.data<T>();
    auto* prior_box_var_data = prior_box_var.data<T>();

    for (int64_t i = 0; i < row; ++i) {
      for (int64_t j = 0; j < col; ++j) {
G
gaoyuan 已提交
47 48
        T prior_box_width =
            prior_box_data[j * len + 2] - prior_box_data[j * len];
G
gaoyuan 已提交
49
        T prior_box_height =
G
gaoyuan 已提交
50
            prior_box_data[j * len + 3] - prior_box_data[j * len + 1];
G
gaoyuan 已提交
51
        T prior_box_center_x =
G
gaoyuan 已提交
52
            (prior_box_data[j * len + 2] + prior_box_data[j * len]) / 2;
G
gaoyuan 已提交
53
        T prior_box_center_y =
G
gaoyuan 已提交
54
            (prior_box_data[j * len + 3] + prior_box_data[j * len + 1]) / 2;
G
gaoyuan 已提交
55 56

        T target_box_center_x =
G
gaoyuan 已提交
57
            (target_box_data[i * len + 2] + target_box_data[i * len]) / 2;
G
gaoyuan 已提交
58
        T target_box_center_y =
G
gaoyuan 已提交
59
            (target_box_data[i * len + 3] + target_box_data[i * len + 1]) / 2;
G
gaoyuan 已提交
60
        T target_box_width =
G
gaoyuan 已提交
61
            target_box_data[i * len + 2] - target_box_data[i * len];
G
gaoyuan 已提交
62
        T target_box_height =
G
gaoyuan 已提交
63
            target_box_data[i * len + 3] - target_box_data[i * len + 1];
G
gaoyuan 已提交
64

G
gaoyuan 已提交
65
        size_t offset = i * col * len + j * len;
G
gaoyuan 已提交
66
        output[offset] = (target_box_center_x - prior_box_center_x) /
G
gaoyuan 已提交
67
                         prior_box_width / prior_box_var_data[j * len];
G
gaoyuan 已提交
68
        output[offset + 1] = (target_box_center_y - prior_box_center_y) /
G
gaoyuan 已提交
69
                             prior_box_height / prior_box_var_data[j * len + 1];
G
gaoyuan 已提交
70 71
        output[offset + 2] =
            std::log(std::fabs(target_box_width / prior_box_width)) /
G
gaoyuan 已提交
72
            prior_box_var_data[j * len + 2];
G
gaoyuan 已提交
73 74
        output[offset + 3] =
            std::log(std::fabs(target_box_height / prior_box_height)) /
G
gaoyuan 已提交
75
            prior_box_var_data[j * len + 3];
G
gaoyuan 已提交
76 77 78 79 80 81 82
      }
    }
  }
  void DecodeCenterSize(const Tensor& target_box, const Tensor& prior_box,
                        const Tensor& prior_box_var, T* output) const {
    int64_t row = target_box.dims()[0];
    int64_t col = prior_box.dims()[0];
G
gaoyuan 已提交
83
    int64_t len = prior_box.dims()[1];
G
gaoyuan 已提交
84 85 86 87 88 89 90

    auto* target_box_data = target_box.data<T>();
    auto* prior_box_data = prior_box.data<T>();
    auto* prior_box_var_data = prior_box_var.data<T>();

    for (int64_t i = 0; i < row; ++i) {
      for (int64_t j = 0; j < col; ++j) {
G
gaoyuan 已提交
91 92
        T prior_box_width =
            prior_box_data[j * len + 2] - prior_box_data[j * len];
G
gaoyuan 已提交
93
        T prior_box_height =
G
gaoyuan 已提交
94
            prior_box_data[j * len + 3] - prior_box_data[j * len + 1];
G
gaoyuan 已提交
95
        T prior_box_center_x =
G
gaoyuan 已提交
96
            (prior_box_data[j * len + 2] + prior_box_data[j * len]) / 2;
G
gaoyuan 已提交
97
        T prior_box_center_y =
G
gaoyuan 已提交
98
            (prior_box_data[j * len + 3] + prior_box_data[j * len + 1]) / 2;
G
gaoyuan 已提交
99

G
gaoyuan 已提交
100 101
        T target_box_center_x = prior_box_var_data[j * len] *
                                    target_box_data[i * len] * prior_box_width +
G
gaoyuan 已提交
102
                                prior_box_center_x;
G
gaoyuan 已提交
103 104
        T target_box_center_y = prior_box_var_data[j * len + 1] *
                                    target_box_data[i * len + 1] *
G
gaoyuan 已提交
105 106
                                    prior_box_height +
                                prior_box_center_y;
G
gaoyuan 已提交
107 108
        T target_box_width = std::exp(prior_box_var_data[j * len + 2] *
                                      target_box_data[i * len + 2]) *
G
gaoyuan 已提交
109
                             prior_box_width;
G
gaoyuan 已提交
110 111
        T target_box_height = std::exp(prior_box_var_data[j * len + 3] *
                                       target_box_data[i * len + 3]) *
G
gaoyuan 已提交
112 113
                              prior_box_height;

G
gaoyuan 已提交
114
        size_t offset = i * col * len + j * len;
G
gaoyuan 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
        output[offset] = target_box_center_x - target_box_width / 2;
        output[offset + 1] = target_box_center_y - target_box_height / 2;
        output[offset + 2] = target_box_center_x + target_box_width / 2;
        output[offset + 3] = target_box_center_y + target_box_height / 2;
      }
    }
  }

  void Compute(const framework::ExecutionContext& context) const override {
    auto* prior_box = context.Input<framework::Tensor>("PriorBox");
    auto* prior_box_var = context.Input<framework::Tensor>("PriorBoxVar");
    auto* target_box = context.Input<framework::LoDTensor>("TargetBox");
    auto* output_box = context.Output<Tensor>("OutputBox");

    if (target_box->lod().size()) {
      PADDLE_ENFORCE_EQ(target_box->lod().size(), 1UL,
                        "Only support 1 level of LoD.");
    }
    auto row = target_box->dims()[0];
    auto col = prior_box->dims()[0];
G
gaoyuan 已提交
135
    auto len = prior_box->dims()[1];
G
gaoyuan 已提交
136

G
gaoyuan 已提交
137
    output_box->mutable_data<T>({row, col, len}, context.GetPlace());
G
gaoyuan 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150

    auto code_type = GetBoxCodeType(context.Attr<std::string>("code_type"));
    T* output = output_box->data<T>();
    if (code_type == BoxCodeType::kEncodeCenterSize) {
      EncodeCenterSize(*target_box, *prior_box, *prior_box_var, output);
    } else if (code_type == BoxCodeType::kDecodeCenterSize) {
      DecodeCenterSize(*target_box, *prior_box, *prior_box_var, output);
    }
  }
};

}  // namespace operators
}  // namespace paddle