box_coder_op.cu 6.7 KB
Newer Older
G
gaoyuan 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
G
gaoyuan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/box_coder_op.h"
#include "paddle/platform/cuda_helper.h"

namespace paddle {
namespace operators {

template <typename T>
__global__ void EncodeCenterSizeKernel(const T* prior_box_data,
                                       const T* prior_box_var_data,
G
gaoyuan 已提交
21 22 23
                                       const T* target_box_data, const int row,
                                       const int col, const int len,
                                       T* output) {
G
gaoyuan 已提交
24 25 26 27 28
  const int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < row * col) {
    const int row_idx = idx / col;
    const int col_idx = idx % col;
    T prior_box_width =
G
gaoyuan 已提交
29
        prior_box_data[col_idx * len + 2] - prior_box_data[col_idx * len];
G
gaoyuan 已提交
30
    T prior_box_height =
G
gaoyuan 已提交
31
        prior_box_data[col_idx * len + 3] - prior_box_data[col_idx * len + 1];
G
gaoyuan 已提交
32
    T prior_box_center_x =
G
gaoyuan 已提交
33 34 35 36
        (prior_box_data[col_idx * len + 2] + prior_box_data[col_idx * len]) / 2;
    T prior_box_center_y = (prior_box_data[col_idx * len + 3] +
                            prior_box_data[col_idx * len + 1]) /
                           2;
G
gaoyuan 已提交
37 38

    T target_box_center_x =
G
gaoyuan 已提交
39
        (target_box_data[row_idx * len + 2] + target_box_data[row_idx * len]) /
G
gaoyuan 已提交
40
        2;
G
gaoyuan 已提交
41 42 43
    T target_box_center_y = (target_box_data[row_idx * len + 3] +
                             target_box_data[row_idx * len + 1]) /
                            2;
G
gaoyuan 已提交
44
    T target_box_width =
G
gaoyuan 已提交
45
        target_box_data[row_idx * len + 2] - target_box_data[row_idx * len];
G
gaoyuan 已提交
46
    T target_box_height =
G
gaoyuan 已提交
47
        target_box_data[row_idx * len + 3] - target_box_data[row_idx * len + 1];
G
gaoyuan 已提交
48

G
gaoyuan 已提交
49 50 51 52 53 54 55 56 57
    output[idx * len] = (target_box_center_x - prior_box_center_x) /
                        prior_box_width / prior_box_var_data[col_idx * len];
    output[idx * len + 1] = (target_box_center_y - prior_box_center_y) /
                            prior_box_height /
                            prior_box_var_data[col_idx * len + 1];
    output[idx * len + 2] = log(fabs(target_box_width / prior_box_width)) /
                            prior_box_var_data[col_idx * len + 2];
    output[idx * len + 3] = log(fabs(target_box_height / prior_box_height)) /
                            prior_box_var_data[col_idx * len + 3];
G
gaoyuan 已提交
58 59 60 61 62 63
  }
}

template <typename T>
__global__ void DecodeCenterSizeKernel(const T* prior_box_data,
                                       const T* prior_box_var_data,
G
gaoyuan 已提交
64 65 66
                                       const T* target_box_data, const int row,
                                       const int col, const int len,
                                       T* output) {
G
gaoyuan 已提交
67 68 69 70 71
  const int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < row * col) {
    const int row_idx = idx / col;
    const int col_idx = idx % col;
    T prior_box_width =
G
gaoyuan 已提交
72
        prior_box_data[col_idx * len + 2] - prior_box_data[col_idx * len];
G
gaoyuan 已提交
73
    T prior_box_height =
G
gaoyuan 已提交
74
        prior_box_data[col_idx * len + 3] - prior_box_data[col_idx * len + 1];
G
gaoyuan 已提交
75
    T prior_box_center_x =
G
gaoyuan 已提交
76 77 78 79
        (prior_box_data[col_idx * len + 2] + prior_box_data[col_idx * len]) / 2;
    T prior_box_center_y = (prior_box_data[col_idx * len + 3] +
                            prior_box_data[col_idx * len + 1]) /
                           2;
G
gaoyuan 已提交
80

G
gaoyuan 已提交
81 82
    T target_box_width = exp(prior_box_var_data[col_idx * len + 2] *
                             target_box_data[row_idx * len + 2]) *
G
gaoyuan 已提交
83
                         prior_box_width;
G
gaoyuan 已提交
84 85
    T target_box_height = exp(prior_box_var_data[col_idx * len + 3] *
                              target_box_data[row_idx * len + 3]) *
G
gaoyuan 已提交
86
                          prior_box_height;
G
gaoyuan 已提交
87 88 89
    T target_box_center_x = prior_box_var_data[col_idx * len] *
                                target_box_data[row_idx * len] *
                                prior_box_width +
G
gaoyuan 已提交
90
                            prior_box_center_x;
G
gaoyuan 已提交
91 92
    T target_box_center_y = prior_box_var_data[col_idx * len + 1] *
                                target_box_data[row_idx * len + 1] *
G
gaoyuan 已提交
93 94 95
                                prior_box_height +
                            prior_box_center_y;

G
gaoyuan 已提交
96 97 98 99
    output[idx * len] = target_box_center_x - target_box_width / 2;
    output[idx * len + 1] = target_box_center_y - target_box_height / 2;
    output[idx * len + 2] = target_box_center_x + target_box_width / 2;
    output[idx * len + 3] = target_box_center_y + target_box_height / 2;
G
gaoyuan 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
  }
}

template <typename T>
class BoxCoderCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(context.GetPlace()),
                   "This kernel only runs on GPU device.");
    auto* prior_box = context.Input<framework::Tensor>("PriorBox");
    auto* prior_box_var = context.Input<framework::Tensor>("PriorBoxVar");
    auto* target_box = context.Input<framework::LoDTensor>("TargetBox");
    auto* output_box = context.Output<Tensor>("OutputBox");

    if (target_box->lod().size()) {
G
gaoyuan 已提交
115
      PADDLE_ENFORCE_EQ(target_box->lod().size(), 1,
G
gaoyuan 已提交
116 117 118 119
                        "Only support 1 level of LoD.");
    }
    auto row = target_box->dims()[0];
    auto col = prior_box->dims()[0];
G
gaoyuan 已提交
120
    auto len = prior_box->dims()[1];
G
gaoyuan 已提交
121 122 123 124 125 126 127 128
    int block = 512;
    int grid = (row * col + block - 1) / block;
    auto& device_ctx = context.cuda_device_context();

    const T* prior_box_data = prior_box->data<T>();
    const T* prior_box_var_data = prior_box_var->data<T>();
    const T* target_box_data = target_box->data<T>();

G
gaoyuan 已提交
129
    output_box->mutable_data<T>({row, col, len}, context.GetPlace());
G
gaoyuan 已提交
130 131 132 133 134
    T* output = output_box->data<T>();

    auto code_type = GetBoxCodeType(context.Attr<std::string>("code_type"));
    if (code_type == BoxCodeType::kEncodeCenterSize) {
      EncodeCenterSizeKernel<T><<<grid, block, 0, device_ctx.stream()>>>(
G
gaoyuan 已提交
135
          prior_box_data, prior_box_var_data, target_box_data, row, col, len,
G
gaoyuan 已提交
136 137 138
          output);
    } else if (code_type == BoxCodeType::kDecodeCenterSize) {
      DecodeCenterSizeKernel<T><<<grid, block, 0, device_ctx.stream()>>>(
G
gaoyuan 已提交
139
          prior_box_data, prior_box_var_data, target_box_data, row, col, len,
G
gaoyuan 已提交
140 141 142 143 144 145 146 147 148 149 150
          output);
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(box_coder, ops::BoxCoderCUDAKernel<float>,
                        ops::BoxCoderCUDAKernel<double>);