regularizer.py 10.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
import logging
17

18
from . import framework
19
from .framework import in_dygraph_mode, _varbase_creator
C
chengduoZH 已提交
20
from . import core
21

Y
yuyang18 已提交
22
__all__ = ['L1Decay', 'L2Decay', 'L1DecayRegularizer', 'L2DecayRegularizer']
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38


class WeightDecayRegularizer(object):
    """Base class for weight decay regularizers

    Defines the common interface of weight-decay regularizers.
    Weight-decay regularizers are added only during the backward
    pass for faster regularization. They add operations to the network
    that correspond to gradient of the regularization function.
    Users should not use this class directly, but need to use one
    of its implementations
    """

    def __init__(self):
        pass

C
chengduoZH 已提交
39
    def __call__(self, param, grad, block):
40 41 42 43
        """Add corresponding weight decay operations to the network
        """
        raise NotImplementedError()

F
fengjiayi 已提交
44 45 46 47 48
    def __str__(self):
        """Debug string
        """
        raise NotImplementedError()

49 50

class L2DecayRegularizer(WeightDecayRegularizer):
51
    r""" 
52
    Implement the L2 Weight Decay Regularization, which helps to prevent the model over-fitting.
53

54 55 56 57 58
    It can be set in :ref:`api_fluid_ParamAttr` or ``optimizer`` (such as :ref:`api_fluid_optimizer_SGDOptimizer` ). 
    When set in ``ParamAttr`` , it only takes effect for trainable parameters in this layer. When set in 
    ``optimizer`` , it takes effect for all trainable parameters. When set together, ``ParamAttr`` has 
    higher priority than ``optimizer`` .
    
59
    In the implementation, the formula of L2 Weight Decay Regularization is as follows:
60 61 62 63 64 65

    .. math::

        L2WeightDecay = reg\_coeff * parameter

    Args:
66
        regularization_coeff(float, optional): regularization coeff. Default:0.0
67 68 69 70

    Examples:
        .. code-block:: python

71
            # Example1: set Regularizer in optimizer
72
            import paddle.fluid as fluid
73

74 75 76 77 78 79 80 81 82
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name='image', shape=[3, 28, 28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[1], dtype='int64')
                hidden = fluid.layers.fc(input=data, size=128, act='relu')
                prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
                loss = fluid.layers.cross_entropy(input=prediction, label=label)
                avg_loss = fluid.layers.mean(loss)
83 84
            optimizer = fluid.optimizer.Adagrad(
                learning_rate=1e-4,
85
                regularization=fluid.regularizer.L2Decay(
86
                    regularization_coeff=0.1))
87
            optimizer.minimize(avg_loss)
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111


            # Example2: set Regularizer both in ParamAttr and optimizer
            import paddle.fluid as fluid

            l1 = fluid.regularizer.L1Decay(regularization_coeff=0.1)
            l2 = fluid.regularizer.L2Decay(regularization_coeff=0.1)
            x = fluid.layers.uniform_random([3,4])
            
            # set L1 regularization in fluid.ParamAttr
            w_param = fluid.ParamAttr(regularizer=l1)
            hidden1 = fluid.layers.fc(x, 8, param_attr=w_param)  # fc_0.w_0(L1), fc_0.b_0
            hidden2 = fluid.layers.fc(hidden1, 16, param_attr=w_param)   # fc_1.w_0(L1), fc_1.b_0
            predict = fluid.layers.fc(hidden2, 32)    # fc_3.w_0, fc_3.b_0
            avg_loss = fluid.layers.mean(predict)

            # set L2 regularization in optimizer
            optimizer = fluid.optimizer.SGD(learning_rate=1e-4, regularization=l2)
            optimizer.minimize(avg_loss)
            
            # it will Print Message:
            # Regularization of [fc_0.w_0, fc_1.w_0] have been set by ParamAttr or WeightNormParamAttr already. 
            # So, the Regularization of Optimizer will not take effect for these parameters!

112 113 114 115 116 117 118
    """

    def __init__(self, regularization_coeff=0.0):
        assert regularization_coeff is not None
        super(L2DecayRegularizer, self).__init__()
        self._regularization_coeff = regularization_coeff

C
chengduoZH 已提交
119
    def __call__(self, param, grad, block):
120 121 122 123 124 125 126 127 128 129 130 131
        """Add L2 weight decay ops to network

        Adds L2 weight decay ops.
        L2WeightDecay = reg_coeff * parameter

        Args:
            param: parameter variable for which regularization is applied
            block: block in which variable is to be created

        Returns:
            new variable for weight decay
        """
132
        assert isinstance(param, framework.Variable)
133
        assert isinstance(block, framework.Block)
C
chengduoZH 已提交
134

135 136 137
        inputs = {"X": [param]}
        attrs = {"scale": self._regularization_coeff}

H
Hongyu Liu 已提交
138
        if framework.in_dygraph_mode():
139
            return core.ops.scale(param, "scale", self._regularization_coeff)
H
Hongyu Liu 已提交
140 141 142
        else:
            decay = block.create_var(
                dtype=param.dtype, shape=param.shape, lod_level=param.lod_level)
C
chengduoZH 已提交
143

144 145 146 147 148 149
            # Append Op to calculate decay
            block.append_op(
                type='scale',
                inputs={"X": param},
                outputs={"Out": decay},
                attrs={"scale": self._regularization_coeff})
150

151
            return decay
152

F
fengjiayi 已提交
153 154 155
    def __str__(self):
        return "L2Decay, regularization_coeff=%f" % self._regularization_coeff

156 157

class L1DecayRegularizer(WeightDecayRegularizer):
158
    r"""
159 160
    Implement the L1 Weight Decay Regularization, which encourages the weights to be sparse.
    
161 162 163 164 165
    It can be set in :ref:`api_fluid_ParamAttr` or ``optimizer`` (such as :ref:`api_fluid_optimizer_SGDOptimizer` ). 
    When set in ``ParamAttr`` , it only takes effect for trainable parameters in this layer. When set in 
    ``optimizer`` , it takes effect for all trainable parameters. When set together, ``ParamAttr`` has 
    higher priority than ``optimizer`` .
    
166 167
    In the implementation, the formula of L1 Weight Decay Regularization is as follows:
	
168 169 170 171 172
    .. math::

        L1WeightDecay = reg\_coeff * sign(parameter)

    Args:
173
        regularization_coeff(float, optional): regularization coeff. Default:0.0.
174
	
175 176 177
    Examples:
        .. code-block:: python

178
            # Example1: set Regularizer in optimizer
179
            import paddle.fluid as fluid
180

181 182 183 184 185 186 187 188 189
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name='image', shape=[3, 28, 28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[1], dtype='int64')
                hidden = fluid.layers.fc(input=data, size=128, act='relu')
                prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
                loss = fluid.layers.cross_entropy(input=prediction, label=label)
                avg_loss = fluid.layers.mean(loss)
X
Xin Pan 已提交
190 191 192 193
            optimizer = fluid.optimizer.Adagrad(
                learning_rate=1e-4,
                regularization=fluid.regularizer.L1DecayRegularizer(
                    regularization_coeff=0.1))
194
            optimizer.minimize(avg_loss)
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
 

            # Example2: set Regularizer both in ParamAttr and optimizer
            import paddle.fluid as fluid

            l1 = fluid.regularizer.L1Decay(regularization_coeff=0.1)
            l2 = fluid.regularizer.L2Decay(regularization_coeff=0.1)
            x = fluid.layers.uniform_random([3,4])
            
            # set L1 regularization in fluid.ParamAttr
            w_param = fluid.ParamAttr(regularizer=l1)
            hidden1 = fluid.layers.fc(x, 8, param_attr=w_param)  # fc_0.w_0(L1), fc_0.b_0
            hidden2 = fluid.layers.fc(hidden1, 16, param_attr=w_param)  # fc_1.w_0(L1), fc_1.b_0
            predict = fluid.layers.fc(hidden2, 32)   # fc_3.w_0, fc_3.b_0
            avg_loss = fluid.layers.mean(predict)

            # set L2 regularization in optimizer
            optimizer = fluid.optimizer.SGD(learning_rate=1e-4, regularization=l2)
            optimizer.minimize(avg_loss)
            
            # it will Print Message:
            # Regularization of [fc_0.w_0, fc_1.w_0] have been set by ParamAttr or WeightNormParamAttr already. 
            # So, the Regularization of Optimizer will not take effect for these parameters!

219 220 221 222 223 224 225
    """

    def __init__(self, regularization_coeff=0.0):
        assert regularization_coeff is not None
        super(L1DecayRegularizer, self).__init__()
        self._regularization_coeff = regularization_coeff

C
chengduoZH 已提交
226
    def __call__(self, param, grad, block):
227 228 229 230 231 232 233 234 235 236 237 238
        """Add L1 weight decay ops to network

        Adds L1 weight decay ops.
        L1WeightDecay = reg_coeff * sign(parameter)

        Args:
            param: parameter variable for which regularization is applied
            block: block in which variable is to be created

        Returns:
            new variable for weight decay
        """
239
        assert isinstance(param, framework.Variable)
240
        assert isinstance(block, framework.Block)
C
chengduo 已提交
241

H
Hongyu Liu 已提交
242
        if framework.in_dygraph_mode():
243
            sign = block.create_var(dtype=param.dtype, shape=param.shape)
H
Hongyu Liu 已提交
244 245
            decay = block.create_var(dtype=param.dtype, shape=param.shape)
        else:
246 247
            sign = block.create_var(
                dtype=param.dtype, shape=param.shape, lod_level=param.lod_level)
H
Hongyu Liu 已提交
248 249
            decay = block.create_var(
                dtype=param.dtype, shape=param.shape, lod_level=param.lod_level)
C
chengduoZH 已提交
250

251
        # Append sign op
252
        block.append_op(type='sign', inputs={"X": param}, outputs={"Out": sign})
253 254 255 256

        # Append scale op to the output of sign op
        block.append_op(
            type='scale',
257
            inputs={"X": sign},
258 259 260 261
            outputs={"Out": decay},
            attrs={"scale": self._regularization_coeff})

        return decay
262

F
fengjiayi 已提交
263 264 265
    def __str__(self):
        return "L1Decay, regularization_coeff=%f" % self._regularization_coeff

266 267 268 269 270 271 272

# We short the class name, since users will use the regulaizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
Y
Yu Yang 已提交
273
#                          param_attr=fluid.regularizer.Xavier())
274 275 276 277
#
# It is no need to add a `Regularizer` as the class suffix
L1Decay = L1DecayRegularizer
L2Decay = L2DecayRegularizer