input.py 9.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import warnings
from ...fluid.framework import Variable, in_dygraph_mode
from ...fluid.layer_helper import LayerHelper
from ...fluid.layers import core
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype

T
tangwei12 已提交
22
__all__ = ['one_hot', 'embedding']
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74


def one_hot(x, num_classes, name=None):
    """

    The operator converts each id in the input 'x' to an one-hot vector with a
    num_classes length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor is generated by appending num_classes dimension
    behind the last dimension of the 'x' shape.

    .. code-block:: text

        Example 1:

        input:
            x.shape = [4]
            x.data = [1, 1, 3, 0]
            num_classes = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2:

        input:
            x.shape = [4]
            x.data = [1, 1, 5, 0]
            num_classes = 4

        output: Throw an exception for Illegal value
            The second dimension in X is 5, which is greater than num_classes,
            so it throws an exception.


    Args:
        x(Tensor): Tensor with shape :math:`[N_1, N_2, ..., N_k]` ,
            which contains at least one dimension. The data type is int32 or int64.
        num_classes(int): An integer defining the num_classes of the one hot dimension. If input 'x'
            is word id, num_classes is generally the dictionary size.

    Returns:
        Tensor: The one-hot representations of 'x'. A Tensor with type float32.

    Examples:
        .. code-block:: python

75
            import paddle
76
            # Correspond to the first example above, where label.shape is 4 and one_hot_label.shape is [4, 4].
Y
yukavio 已提交
77
            label = paddle.to_tensor([1, 1, 3, 0], dtype='int64')
78
            # label.shape = [4]
Y
yukavio 已提交
79
            one_hot_label = paddle.nn.functional.one_hot(label, num_classes=4)
80
            # one_hot_label.shape = [4, 4]
Y
yukavio 已提交
81 82 83 84
            # one_hot_label = [[0., 1., 0., 0.],
            #                  [0., 1., 0., 0.],
            #                  [0., 0., 0., 1.],
            #                  [1., 0., 0., 0.]]
T
tangwei12 已提交
85

86 87 88 89 90 91 92 93 94 95 96
    """

    if in_dygraph_mode():
        return core.ops.one_hot_v2(x, 'depth', num_classes,
                                   'allow_out_of_range', False)
    else:
        check_variable_and_dtype(x, 'input', ['int32', 'int64'], 'one_hot_v2')
        helper = LayerHelper("one_hot_v2", **locals())

        one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
        if not isinstance(num_classes, Variable):
T
tangwei12 已提交
97
            # user attribute
98 99 100 101 102 103 104 105 106 107 108 109 110
            inputs = {'X': x}
            attrs = {'depth': num_classes, 'allow_out_of_range': False}
        else:
            num_classes.stop_gradient = True
            inputs = {'X': x, 'depth_tensor': num_classes}
            attrs = {'allow_out_of_range': False}
        helper.append_op(
            type="one_hot_v2",
            inputs=inputs,
            attrs=attrs,
            outputs={'Out': one_hot_out},
            stop_gradient=True)
        return one_hot_out
T
tangwei12 已提交
111 112 113


def embedding(x, weight, padding_idx=None, sparse=False, name=None):
114
    r"""
T
tangwei12 已提交
115
    The operator is used to lookup embeddings vector of ids provided by :attr:`x` .
T
tangwei12 已提交
116 117 118

    The shape of output Tensor is generated by appending the last dimension of the input Tensor shape
    with embedding size.
T
tangwei12 已提交
119 120

    **Note:** The id in :attr:`x` must satisfy :math:`0 =< id < weight.shape[0]` ,
T
tangwei12 已提交
121 122 123 124 125
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:
T
tangwei12 已提交
126
            x is a Tensor.
T
tangwei12 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140
                padding_idx = -1
                x.data = [[1, 3], [2, 4], [4, 127]]
                x.shape = [3, 2]
                weight.shape = [128, 16]
            output is a Tensor:
                out.shape = [3, 2, 16]
                out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                            [0.345421456, 0.524563927, ..., 0.144534654]],
                            [[0.345249859, 0.124939536, ..., 0.194353745],
                            [0.945345345, 0.435394634, ..., 0.435345365]],
                            [[0.945345345, 0.435394634, ..., 0.435345365],
                            [0.0,         0.0,         ..., 0.0        ]]]  # padding data

            The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
T
tangwei12 已提交
141
            It will pad all-zero data when id is 127.
T
tangwei12 已提交
142 143 144 145 146 147 148 149 150 151 152 153

    Args:
        x(Tensor): A Tensor with type int32/int64, which contains the id information. The value of the input id should
            satisfy :math:`0<= id < weight.shape[0]` .
        weight (Tensor): The weight. A Tensor with shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set
            True because sparse update is faster. But some optimizers does not support sparse update,
            such as :ref:`api_optimizer_AdadeltaOptimizer` , :ref:`api_optimizer_AdamaxOptimizer` ,
            :ref:`api_optimizer_DecayedAdagradOptimizer` , :ref:`api_optimizer_FtrlOptimizer` ,
            :ref:`api_optimizer_LambOptimizer` and :ref:`api_optimizer_LarsMomentumOptimizer` .
T
tangwei12 已提交
154 155
            In these cases, sparse must be False. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-weight.shape[0], weight.shape[0]).
T
tangwei12 已提交
156
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
T
tangwei12 已提交
157
            to :math:`weight.shape[0] + padding\_idx` . It will output all-zero padding data whenever lookup
T
tangwei12 已提交
158 159 160 161 162 163 164
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        name(str|None): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
           None by default.

    Returns:
T
tangwei12 已提交
165
        Tensor: Embedding Tensor  mapped by x. The data type is the same as :attr:`weight`.
T
tangwei12 已提交
166 167 168 169 170

    Examples:

        .. code-block:: python

T
tangwei12 已提交
171
            import numpy as np
T
tangwei12 已提交
172 173 174
            import paddle
            import paddle.nn as nn

T
tangwei12 已提交
175 176
            x0 = np.arange(3, 6).reshape((3, 1)).astype(np.int64)
            w0 = np.full(shape=(10, 3), fill_value=2).astype(np.float32)
T
tangwei12 已提交
177

T
tangwei12 已提交
178 179 180
            # x.data = [[3], [4], [5]]
            # x.shape = [3, 1]
            x = paddle.to_tensor(x0, stop_gradient=False)
T
tangwei12 已提交
181

T
tangwei12 已提交
182 183 184
            # w.data = [[2. 2. 2.] ... [2. 2. 2.]]
            # w.shape = [10, 3]
            w = paddle.to_tensor(w0, stop_gradient=False)
T
tangwei12 已提交
185

T
tangwei12 已提交
186 187 188 189
            # emb.data = [[[2., 2., 2.]], [[2., 2., 2.]], [[2., 2., 2.]]]
            # emb.shape = [3, 1, 3]
            emb = nn.functional.embedding(
                    x=x, weight=w, sparse=True, name="embedding")
T
tangwei12 已提交
190 191

    """
192 193 194 195 196 197 198
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        weight.shape[0] + padding_idx)

    if padding_idx >= weight.shape[0] or padding_idx < -weight.shape[0]:
        raise ValueError("padding_idx must be within [-{}, {})".format(
            weight.shape[0], weight.shape[0]))

T
tangwei12 已提交
199 200 201 202 203 204
    if in_dygraph_mode():
        return core.ops.lookup_table_v2(
            weight, x, 'is_sparse', sparse, 'is_distributed', False,
            'remote_prefetch', False, 'padding_idx', padding_idx)
    else:
        helper = LayerHelper('embedding', **locals())
205
        dtype = helper.input_dtype(input_param_name='weight')
T
tangwei12 已提交
206 207 208 209 210 211 212

        check_variable_and_dtype(x, 'input', ['int32', 'int64'], 'embedding')

        is_distributed = False
        remote_prefetch = sparse and (not is_distributed)

        tmp = helper.create_variable_for_type_inference(dtype)
T
tangwei12 已提交
213

T
tangwei12 已提交
214 215 216 217 218 219 220 221 222 223 224 225
        helper.append_op(
            type='lookup_table_v2',
            inputs={'Ids': x,
                    'W': weight},
            outputs={'Out': tmp},
            attrs={
                'is_sparse': sparse,
                'is_distributed': is_distributed,
                'remote_prefetch': remote_prefetch,
                'padding_idx': padding_idx
            })
        return tmp