dist_multi_trainer.cc 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include <vector>
17
#include "io/fs.h"
18
#include "paddle/fluid/framework/data_feed_factory.h"
D
dongdaxiang 已提交
19
#include "paddle/fluid/framework/data_set.h"
20 21 22 23 24 25
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/trainer.h"

namespace paddle {
namespace framework {

26 27
void DistMultiTrainer::Initialize(const TrainerDesc &trainer_desc,
                                  Dataset *dataset) {
28
  thread_num_ = trainer_desc.thread_num();
29
  SetDataset(dataset);
D
dongdaxiang 已提交
30

31 32 33 34 35 36 37
  dump_fields_path_ = trainer_desc.dump_fields_path();
  dump_converter_ = trainer_desc.dump_converter();
  need_dump_field_ = false;
  if (trainer_desc.dump_fields_size() != 0 && dump_fields_path_ != "") {
    need_dump_field_ = true;
  }
  if (need_dump_field_) {
38
    auto &file_list = dataset->GetFileList();
39 40 41 42 43
    if (file_list.size() == 0) {
      need_dump_field_ = false;
    }
  }
  mpi_rank_ = trainer_desc.mpi_rank() / 2;
44 45
  mpi_size_ = trainer_desc.mpi_size() / 2;
  dump_file_num_ = trainer_desc.dump_file_num();
46
  const std::vector<paddle::framework::DataFeed *> readers =
47
      dataset->GetReaders();
48

49 50
  thread_num_ = readers.size();
  workers_.resize(thread_num_);
51 52 53 54 55
  for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
       i++) {
    need_merge_var_names_.push_back(
        trainer_desc.downpour_param().stat_var_names(i));
  }
56

57 58 59 60
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
    workers_[i]->SetDeviceIndex(i);
D
dongdaxiang 已提交
61
    workers_[i]->SetDataFeed(readers[i]);
62
    workers_[i]->Initialize(trainer_desc);
63
    workers_[i]->SetNeedDump(need_dump_field_);
64 65
  }

D
dongdaxiang 已提交
66
  VLOG(3) << "going to initialize pull dense worker";
67 68
  pull_dense_worker_ = PullDenseWorker::GetInstance();
  pull_dense_worker_->Initialize(trainer_desc);
D
dongdaxiang 已提交
69
  VLOG(3) << "initialize pull dense worker";
70
  SetDebug(trainer_desc.debug());
71 72
}

73
void DistMultiTrainer::DumpWork(int tid) {
74
#ifdef _LINUX
75 76 77 78 79
  int err_no = 0;
  std::string path = string::format_string(
      "%s/part-%03d-%05d", dump_fields_path_.c_str(), mpi_rank_, tid);

  std::shared_ptr<FILE> fp = fs_open_write(path, &err_no, dump_converter_);
80 81 82 83 84 85
  while (1) {
    std::string out_str;
    if (!queue_->Get(out_str)) {
      break;
    }
    size_t write_count =
86
        fwrite_unlocked(out_str.data(), 1, out_str.length(), fp.get());
87 88 89 90
    if (write_count != out_str.length()) {
      VLOG(3) << "dump text failed";
      continue;
    }
91
    write_count = fwrite_unlocked("\n", 1, 1, fp.get());
92 93 94 95 96 97 98 99 100 101 102 103 104
    if (write_count != 1) {
      VLOG(3) << "dump text failed";
      continue;
    }
  }
#endif
}

void DistMultiTrainer::InitDumpEnv() {
  queue_ = paddle::framework::MakeChannel<std::string>();
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetChannelWriter(queue_.get());
  }
105 106 107 108 109 110 111 112 113 114 115
  dump_thread_num_ = 1;
  if (dump_file_num_ > mpi_size_) {
    dump_thread_num_ = dump_file_num_ / mpi_size_;
    if (dump_file_num_ % mpi_size_ > mpi_rank_) {
      dump_thread_num_ += 1;
    }
  }
  for (int i = 0; i < dump_thread_num_; i++) {
    dump_thread_.push_back(
        std::thread(std::bind(&DistMultiTrainer::DumpWork, this, i)));
  }
116 117 118 119
}

void DistMultiTrainer::FinalizeDumpEnv() {
  queue_->Close();
120 121 122
  for (auto &th : dump_thread_) {
    th.join();
  }
123 124 125
  queue_.reset();
}

126
void DistMultiTrainer::InitOtherEnv(const ProgramDesc &main_program) {
127 128 129
  if (need_dump_field_) {
    InitDumpEnv();
  }
130
  pull_dense_worker_->SetRootScope(root_scope_);
131
  pull_dense_worker_->Start();
D
dongdaxiang 已提交
132
  VLOG(3) << "init other env done.";
133 134
}

135 136 137 138 139 140 141 142 143 144 145 146
void DistMultiTrainer::Run() {
  for (int thidx = 0; thidx < thread_num_; ++thidx) {
    if (!debug_) {
      threads_.push_back(
          std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
    } else {
      threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
                                     workers_[thidx].get()));
    }
  }
}

147
void DistMultiTrainer::Finalize() {
148
  for (auto &th : threads_) {
149 150
    th.join();
  }
151 152 153 154 155 156 157 158 159 160 161 162 163 164
  for (int i = 0; i < need_merge_var_names_.size(); i++) {
    Variable *root_var = root_scope_->FindVar(need_merge_var_names_[i]);
    if (root_var == nullptr) {
      continue;
    }
    LoDTensor *root_tensor = root_var->GetMutable<LoDTensor>();
    for (int j = 1; j < thread_num_; j++) {
      Scope *cur_thread_scope = workers_[j]->GetThreadScope();
      Variable *thread_var =
          cur_thread_scope->FindVar(need_merge_var_names_[i]);
      LoDTensor *thread_tensor = thread_var->GetMutable<LoDTensor>();
      if (root_tensor->numel() != thread_tensor->numel()) {
        continue;
      }
165 166 167 168 169 170 171 172 173 174 175 176
#define MergeCallback(cpp_type, proto_type)                                    \
  do {                                                                         \
    if (root_tensor->type() == proto_type) {                                   \
      if (thread_tensor->type() != proto_type) {                               \
        VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
                << "] " << need_merge_var_names_[i]                            \
                << ", root tensor type=" << root_tensor->type()                \
                << ", thread tensor type=" << thread_tensor->type();           \
        exit(-1);                                                              \
      }                                                                        \
      MergeToRootScope<cpp_type>(root_tensor, thread_tensor);                  \
    }                                                                          \
177 178 179 180 181
  } while (0)
      _ForEachDataType_(MergeCallback);
    }
  }

182 183 184
  if (need_dump_field_) {
    FinalizeDumpEnv();
  }
185
  pull_dense_worker_->Stop();
186
  root_scope_->DropKids();
187 188 189 190

  // flush local client push queue
  auto fleet_ptr_ = FleetWrapper::GetInstance();
  fleet_ptr_->ClientFlush();
191 192
}

193 194 195 196 197 198 199 200 201
template <typename T>
void DistMultiTrainer::MergeToRootScope(LoDTensor *root_tensor,
                                        LoDTensor *tensor) {
  T *root_data = root_tensor->data<T>();
  T *data = tensor->data<T>();
  for (int i = 0; i < tensor->numel(); i++) {
    root_data[i] += data[i];
  }
}
202 203
}  // end namespace framework
}  // end namespace paddle