test_logical_op.py 2.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import op_test
18 19
import unittest
import numpy as np
20 21
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42


def create_test_class(op_type, callback, binary_op=True):
    class Cls(op_test.OpTest):
        def setUp(self):
            a = np.random.choice(a=[True, False], size=(10, 7)).astype(bool)
            if binary_op:
                b = np.random.choice(a=[True, False], size=(10, 7)).astype(bool)
                c = callback(a, b)
            else:
                c = callback(a)
            self.outputs = {'Out': c}
            self.op_type = op_type
            if binary_op:
                self.inputs = {'X': a, 'Y': b}
            else:
                self.inputs = {'X': a}

        def test_output(self):
            self.check_output()

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
        def test_error(self):
            with program_guard(Program(), Program()):
                x = fluid.layers.data(name='x', shape=[2], dtype='bool')
                y = fluid.layers.data(name='y', shape=[2], dtype='bool')
                a = fluid.layers.data(name='a', shape=[2], dtype='int32')
                op = eval("fluid.layers.%s" % self.op_type)
                if self.op_type != "logical_not":
                    self.assertRaises(TypeError, op, x=x, y=y, out=1)
                    self.assertRaises(TypeError, op, x=x, y=a)
                    self.assertRaises(TypeError, op, x=a, y=y)
                    self.assertRaises(TypeError, op, x=x, y=y, out=a)
                else:
                    self.assertRaises(TypeError, op, x=x, out=1)
                    self.assertRaises(TypeError, op, x=x, out=a)
                    self.assertRaises(TypeError, op, x=a)

59 60 61 62 63 64 65 66 67 68 69
    Cls.__name__ = op_type
    globals()[op_type] = Cls


create_test_class('logical_and', lambda _a, _b: np.logical_and(_a, _b))
create_test_class('logical_or', lambda _a, _b: np.logical_or(_a, _b))
create_test_class('logical_not', lambda _a: np.logical_not(_a), False)
create_test_class('logical_xor', lambda _a, _b: np.logical_xor(_a, _b))

if __name__ == '__main__':
    unittest.main()