parallel_executor.py 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18
from __future__ import print_function
from . import core
from . import framework
from . import executor
19
from . import compiler
Y
Yu Yang 已提交
20
import sys
21

X
Xin Pan 已提交
22
__all__ = ['ParallelExecutor']
Y
yuyang18 已提交
23 24

ExecutionStrategy = core.ParallelExecutor.ExecutionStrategy
Y
yuyang18 已提交
25
BuildStrategy = core.ParallelExecutor.BuildStrategy
26 27 28


class ParallelExecutor(object):
C
chengduoZH 已提交
29
    """
C
chengduo 已提交
30 31 32 33 34 35 36 37 38
    ParallelExecutor is designed for data parallelism, which focuses on distributing
    the data across different nodes and every node operates on the data in parallel.
    If you use ParallelExecutor to run the current program on GPU, the node means GPU
    device, and ParallelExecutor will get the available GPU device automatically on
    the current machine. If you use ParallelExecutor to run the current program on CPU,
    the node means the CPU device, and you can specify the CPU device number by adding
    'CPU_NUM' environment variable, for example 'CPU_NUM=4', if the environment variable
    is not found, ParallelExecutor will call `multiprocessing.cpu_count` to get the number
    of CPUs in the system.
C
chengduoZH 已提交
39 40 41 42 43 44

    Args:
        use_cuda (bool): Whether to use CUDA or not.
        loss_name (str): The loss name must set in training. Default None.
        main_program (Program): The program that need to run, if not provided,
            then default_main_program will be used. Default None.
C
chengduo 已提交
45
        share_vars_from(ParallelExecutor): If provide, it will share variables
C
chengduoZH 已提交
46
            from the specified ParallelExecutor. Default None.
C
chengduo 已提交
47 48 49 50 51 52 53 54 55
        exec_strategy(ExecutionStrategy): exec_strategy is used to control how to run
            the program in ParallelExecutor, for example how many threads are used to
            execute the program, how many iterations to clean up the temp variables
            which is generated during execution. For more information, please refer
            to fluid.ExecutionStrategy. Default None.
        build_strategy(BuildStrategy): build_strategy is used to control how to
            build the SSA Graph in ParallelExecutor by setting the property,
            for example reduce_strategy, gradient_scale_strategy. For more information,
            please refer to fluid.BuildStrategy. Default None.
C
chengduoZH 已提交
56 57 58
        num_trainers(int): If greater than 1, NCCL will be initialized with
            multiple rank of nodes, each node should have same number of GPUs.
            Distributed training will be enabled then. Default 1.
W
Wu Yi 已提交
59
        trainer_id(int): Must use together with num_trainers. trainer_id is the
C
chengduoZH 已提交
60
            "rank" of current node starts from 0. Default 0.
W
Wu Yi 已提交
61
        scope(Scope): scope to run with, default use fluid.global_scope().
C
chengduoZH 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

    Returns:
        ParallelExecutor: The initialized ParallelExecutor object.

    Raises:
        TypeError: If share_vars_from is provided, but not ParallelExecutor object.

    Examples:
        .. code-block:: python

          train_exe = fluid.ParallelExecutor(use_cuda=True, loss_name=loss.name)
          test_exe = fluid.ParallelExecutor(use_cuda=True,
                                            main_program=test_program,
                                            share_vars_from=train_exe)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
          test_loss, = test_exe.run([loss.name], feed=feed_dict)
    """

X
Xin Pan 已提交
81 82
    def __init__(self,
                 use_cuda,
83 84
                 loss_name=None,
                 main_program=None,
Y
Yu Yang 已提交
85
                 share_vars_from=None,
Y
yuyang18 已提交
86
                 exec_strategy=None,
Y
yuyang18 已提交
87
                 build_strategy=None,
T
typhoonzero 已提交
88
                 num_trainers=1,
89
                 trainer_id=0,
X
Xin Pan 已提交
90
                 scope=None):
X
Xin Pan 已提交
91 92 93 94 95
        sys.stderr.write(
            'ParallelExecutor is deprecated. '
            'Please use CompiledProgram and Executor. CompiledProgram '
            'is a central place for optimization and Executor is the '
            'unified executor. Example can be found in compiler.py.\n')
96

Y
yuyang18 已提交
97 98
        if build_strategy is None:
            build_strategy = BuildStrategy()
99
        build_strategy.num_trainers = num_trainers
100
        build_strategy.trainer_id = trainer_id
101

S
sneaxiy 已提交
102 103
        self._places = framework.cuda_places(
        ) if use_cuda else framework.cpu_places()
104
        self._scope = scope if scope is not None else executor.global_scope()
X
Xin Pan 已提交
105

106
        if main_program is not None and main_program._enable_dgc:
G
gongweibao 已提交
107
            assert num_trainers > 1
108 109 110 111 112
            assert build_strategy.reduce_strategy == BuildStrategy.ReduceStrategy.AllReduce
            assert num_trainers * len(
                self._places) > 1, "dgc is not useful for single card training"
            assert use_cuda

113 114
        main_program = main_program if main_program is not None \
            else framework.default_main_program()
115

116
        self._compiled_program = compiler.CompiledProgram(main_program)
C
chengduo 已提交
117 118 119 120
        if share_vars_from:
            assert isinstance(
                share_vars_from, ParallelExecutor
            ), "The share_vars_from should be ParallelExecutor."
121 122 123 124
        self._compiled_program.with_data_parallel(
            loss_name=loss_name,
            build_strategy=build_strategy,
            exec_strategy=exec_strategy,
C
chengduo 已提交
125 126
            share_vars_from=share_vars_from._compiled_program
            if share_vars_from else None)
G
gongweibao 已提交
127 128 129 130 131

        # FIXME(gongwb): I will move dgc from dist mode to allreduce mode in next pr.
        if main_program._enable_dgc:
            self._compiled_program._build_strategy.is_distribution = True

132
        self._place = core.CUDAPlace(0) if use_cuda else core.CPUPlace()
C
chengduo 已提交
133
        self._exe = executor.Executor(self._place)
134
        self._compiled_program._compile(place=self._place, scope=self._scope)
135

136
    def run(self, fetch_list, feed=None, feed_dict=None, return_numpy=True):
X
Xin Pan 已提交
137
        """
Y
Yu Yang 已提交
138 139 140 141 142 143 144 145
        Run a parallel executor with fetch_list.

        The feed parameter can be a dict or a list. If feed is a dict, the
        feed data will be split into multiple devices. If feed is a list, we
        assume the data has been splitted into multiple devices, the each
        element in the list will be copied to each device directly.

        For example, if the feed is a dict:
C
chengduoZH 已提交
146

Y
Yu Yang 已提交
147 148 149 150 151 152
        >>> exe = ParallelExecutor()
        >>> # the image will be splitted into devices. If there is two devices
        >>> # each device will process an image with shape (24, 1, 28, 28)
        >>> exe.run(feed={'image': numpy.random.random(size=(48, 1, 28, 28))})

        For example, if the feed is a list:
C
chengduoZH 已提交
153

Y
Yu Yang 已提交
154 155 156 157 158 159 160 161 162 163
        >>> exe = ParallelExecutor()
        >>> # each device will process each element in the list.
        >>> # the 1st device will process an image with shape (48, 1, 28, 28)
        >>> # the 2nd device will process an image with shape (32, 1, 28, 28)
        >>> #
        >>> # you can use exe.device_count to get the device number.
        >>> exe.run(feed=[{"image": numpy.random.random(size=(48, 1, 28, 28))},
        >>>               {"image": numpy.random.random(size=(32, 1, 28, 28))},
        >>>              ])

Y
Yu Yang 已提交
164 165
        Args:
            fetch_list(list): The fetched variable names
Y
Yu Yang 已提交
166 167 168
            feed(list|dict|None): The feed variables. If the feed is a dict,
                tensors in that dict will be splitted into each devices. If
                the feed is a list, each element of the list will be copied
C
chengduoZH 已提交
169
                to each device. Default None.
Y
Yu Yang 已提交
170
            feed_dict: Alias for feed parameter, for backward compatibility.
C
chengduoZH 已提交
171
                This parameter has been deprecated. Default None.
C
chengduo 已提交
172
            return_numpy(bool): Whether converts the fetched tensor to numpy.
173
                Default: True.
C
chengduoZH 已提交
174 175 176

        Returns:
            List: The fetched result list.
Y
Yu Yang 已提交
177

C
chengduoZH 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
        Raises:
            ValueError: If the feed is a list, but its length is not equal the
                length of active places, or its element's is not dict.

        NOTES:
            1. If the feed's type is dict, the number of data that feeds to
               ParallelExecutor must be bigger than active places. Otherwise,
               it will throw exception from C++ side. Special attention should be
               paid to check whether the last batch of the dataset is bigger
               than active places.
            2. If active places are more than one, the fetch results for each
               variable is a list, and each element of this list is the variable of
               respective active place.

        Examples:
            .. code-block:: python
Y
Yu Yang 已提交
194

C
chengduoZH 已提交
195 196 197 198 199
                pe = fluid.ParallelExecutor(use_cuda=use_cuda,
                                            loss_name=avg_cost.name,
                                            main_program=fluid.default_main_program())
                loss = pe.run(feed=feeder.feed(cur_batch),
                              fetch_list=[avg_cost.name]))
X
Xin Pan 已提交
200
        """
C
chengduo 已提交
201 202 203 204 205
        return self._exe.run(program=self._compiled_program,
                             scope=self._scope,
                             feed=feed,
                             fetch_list=fetch_list,
                             return_numpy=return_numpy)
T
typhoonzero 已提交
206

Y
Yu Yang 已提交
207 208
    @property
    def device_count(self):
209
        return len(self._places)