hybrid_parallel_mp_model.py 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import paddle
import numpy as np
import random
import paddle.distributed as dist
import paddle.fluid as fluid
import paddle.distributed.fleet as fleet
from paddle.io import DataLoader, Dataset
import unittest


def set_random_seed(seed, dp_id, rank_id):
    """Set random seed for reproducability."""
    random.seed(seed)
    np.random.seed(seed + dp_id)
    paddle.seed(seed + rank_id)


vocab_size = 5
hidden_size = 10
inner_size = 8
output_size = 2
seq_length = 2
40
batch_size = 4
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133


class SimpleMPNet(fluid.dygraph.Layer):
    def __init__(self, vocab_size, hidden_size, inner_size, output_size, np_fc1,
                 np_fc2, mp_id):
        super(SimpleMPNet, self).__init__()

        if mp_id == 0:
            init_fc1_data = np_fc1[:, :(inner_size // 2)]
            init_fc2_data = np_fc2[:(inner_size // 2), :]
        else:
            init_fc1_data = np_fc1[:, (inner_size // 2):]
            init_fc2_data = np_fc2[(inner_size // 2):, :]

        self.linear1 = fleet.meta_parallel.ColumnParallelLinear(
            hidden_size,
            inner_size,
            weight_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Assign(init_fc1_data)),
            gather_output=False,
            has_bias=True)

        self.linear2 = fleet.meta_parallel.RowParallelLinear(
            inner_size,
            hidden_size,
            weight_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Assign(init_fc2_data)),
            input_is_parallel=True,
            has_bias=True)

        self.linear3 = paddle.nn.Linear(
            hidden_size,
            output_size,
            weight_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Constant(0.0)),
            bias_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Constant(0.0)))

        self.embedding = fleet.meta_parallel.VocabParallelEmbedding(
            vocab_size,
            hidden_size,
            weight_attr=paddle.nn.initializer.Constant(value=0.5))

    def forward(self, x):
        x = self.embedding(x)
        x = self.linear1(x)
        x = self.linear2(x)
        x = self.linear3(x)
        return x


class SimpleDPNet(fluid.dygraph.Layer):
    def __init__(self, vocab_size, hidden_size, inner_size, output_size, np_fc1,
                 np_fc2):

        super(SimpleDPNet, self).__init__()
        self.linear1 = paddle.nn.Linear(
            hidden_size,
            inner_size,
            weight_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Assign(np_fc1)),
            bias_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Constant(0.0)))

        self.linear2 = paddle.nn.Linear(
            inner_size,
            hidden_size,
            weight_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Assign(np_fc2)),
            bias_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Constant(0.0)))

        self.linear3 = paddle.nn.Linear(
            hidden_size,
            output_size,
            weight_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Constant(0.0)),
            bias_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Constant(0.0)))

        self.embedding = paddle.nn.Embedding(
            vocab_size,
            hidden_size,
            weight_attr=paddle.nn.initializer.Constant(value=0.5))

    def forward(self, x):
        x = self.embedding(x)
        x = self.linear1(x)
        x = self.linear2(x)
        x = self.linear3(x)
        return x


134
class TestDistMPTraning(unittest.TestCase):
135 136 137 138 139 140 141 142 143 144 145
    def setUp(self):
        strategy = fleet.DistributedStrategy()
        self.model_parallel_size = 2
        self.data_parallel_size = 1
        strategy.hybrid_configs = {
            "dp_degree": self.data_parallel_size,
            "mp_degree": self.model_parallel_size,
            "pp_degree": 1
        }
        fleet.init(is_collective=True, strategy=strategy)

146 147 148 149 150 151 152 153 154 155 156 157 158 159
    def train_batch(self, batch, model, optimizer, is_mp):
        output = model(batch)
        loss = output.mean()
        loss.backward()  # do backward
        optimizer.step()  # update parameters
        optimizer.clear_grad()
        return loss

    def build_optimizer(self, model):
        optimizer = paddle.optimizer.SGD(learning_rate=0.001,
                                         parameters=model.parameters())
        return optimizer

    def build_model_optimizer(self):
160 161 162 163 164 165 166 167 168 169 170 171
        hcg = fleet.get_hybrid_communicate_group()
        word_size = hcg.get_model_parallel_world_size()
        mp_id = hcg.get_model_parallel_rank()
        dp_id = hcg.get_data_parallel_rank()
        rank_id = dist.get_rank()
        set_random_seed(1024, dp_id, rank_id)

        np_fc1 = np.random.random_sample((hidden_size, inner_size))
        np_fc2 = np.random.random_sample((inner_size, hidden_size))

        model_a = SimpleMPNet(vocab_size, hidden_size, inner_size, output_size,
                              np_fc1, np_fc2, mp_id)
172
        optimizer_a = self.build_optimizer(model_a)
173 174 175 176 177
        model_a = fleet.distributed_model(model_a)
        optimizer_a = fleet.distributed_optimizer(optimizer_a)

        model_b = SimpleDPNet(vocab_size, hidden_size, inner_size, output_size,
                              np_fc1, np_fc2)
178 179
        optimizer_b = self.build_optimizer(model_b)

180
        return model_a, optimizer_a, model_b, optimizer_b
181 182

    def test_mp_model(self):
183
        model_a, optimizer_a, model_b, optimizer_b = self.build_model_optimizer(
184
        )
185

186 187 188 189 190
        for _ in range(5):
            np_data = np.random.randint(0, vocab_size, (
                batch_size,
                seq_length, ))
            batch = paddle.to_tensor(np_data)
191 192 193 194 195
            loss_a = self.train_batch(batch, model_a, optimizer_a, True)
            loss_b = self.train_batch(batch, model_b, optimizer_b, False)

            np.testing.assert_allclose(
                loss_a.numpy(), loss_b.numpy(), rtol=1e-5)
196 197 198 199


if __name__ == "__main__":
    unittest.main()