matrix_rank_op.cu 12.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifndef PADDLE_WITH_HIP
// HIP not support cusolver
#include <algorithm>
#include <vector>
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/matrix_rank_op.h"
#include "paddle/fluid/operators/svd_helper.h"
#include "paddle/fluid/platform/dynload/cusolver.h"
#include "paddle/fluid/platform/for_range.h"

namespace paddle {
namespace operators {
namespace detail {
DDim GetUDDim(const DDim& x_dim, int k) {
  auto x_vec = framework::vectorize(x_dim);
  x_vec[x_vec.size() - 1] = k;
  return framework::make_ddim(x_vec);
}

DDim GetVHDDim(const DDim& x_dim, int k) {
  auto x_vec = framework::vectorize(x_dim);
  x_vec[x_vec.size() - 2] = k;
  return framework::make_ddim(x_vec);
}
}  // namespace detail

template <typename T>
class MatrixRankGPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto& dev_ctx =
        context.template device_context<platform::CUDADeviceContext>();

    const Tensor* x = context.Input<Tensor>("X");
    auto* x_data = x->data<T>();
    auto* out = context.Output<Tensor>("Out");
    out->mutable_data<int64_t>(context.GetPlace());
    bool hermitian = context.Attr<bool>("hermitian");

    auto dim_x = x->dims();
    auto dim_out = out->dims();
    int rows = dim_x[dim_x.size() - 2];
    int cols = dim_x[dim_x.size() - 1];
    int k = std::min(rows, cols);
    auto numel = x->numel();
    int batches = numel / (rows * cols);

    bool use_default_tol = context.Attr<bool>("use_default_tol");
    const Tensor* atol_tensor = nullptr;
    Tensor temp_tensor;
    T rtol_T = 0;
    if (use_default_tol) {
      framework::TensorFromVector<T>(std::vector<T>{0},
                                     context.device_context(), &temp_tensor);
      atol_tensor = &temp_tensor;
      rtol_T = std::numeric_limits<T>::epsilon() * std::max(rows, cols);
    } else if (context.HasInput("TolTensor")) {
      atol_tensor = context.Input<Tensor>("TolTensor");
    } else {
      framework::TensorFromVector<T>(std::vector<T>{context.Attr<float>("tol")},
                                     context.device_context(), &temp_tensor);
      atol_tensor = &temp_tensor;
    }

    // Must Copy X once, because the gesvdj will destory the content when exit.
    Tensor x_tmp;
84
    paddle::framework::TensorCopy(*x, context.GetPlace(), &x_tmp);
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    auto info = memory::Alloc(dev_ctx, sizeof(int) * batches);
    int* info_ptr = reinterpret_cast<int*>(info->ptr());

    Tensor eigenvalue_tensor;
    auto* eigenvalue_data = eigenvalue_tensor.mutable_data<T>(
        detail::GetEigenvalueDim(dim_x, k), context.GetPlace());
    if (hermitian) {
      SyevjBatched(dev_ctx, batches, rows, x_tmp.data<T>(), eigenvalue_data,
                   info_ptr);
      platform::ForRange<platform::CUDADeviceContext> for_range(
          dev_ctx, eigenvalue_tensor.numel());
      math::AbsFunctor<T> functor(eigenvalue_data, eigenvalue_data,
                                  eigenvalue_tensor.numel());
      for_range(functor);
    } else {
      Tensor U, VH;
      auto* u_data =
          U.mutable_data<T>(detail::GetUDDim(dim_x, k), context.GetPlace());
      auto* vh_data =
          VH.mutable_data<T>(detail::GetVHDDim(dim_x, k), context.GetPlace());
      GesvdjBatched(dev_ctx, batches, cols, rows, k, x_tmp.data<T>(), vh_data,
                    u_data, eigenvalue_data, info_ptr, 1);
    }

    auto dito_T =
        math::DeviceIndependenceTensorOperations<platform::CUDADeviceContext,
                                                 T>(context);
    std::vector<int> max_eigenvalue_shape = framework::vectorize<int>(
        detail::RemoveLastDim(eigenvalue_tensor.dims()));
    Tensor max_eigenvalue_tensor =
        dito_T.ReduceMax(eigenvalue_tensor, max_eigenvalue_shape);
    Tensor temp_rtol_tensor;
    framework::TensorFromVector<T>(std::vector<T>{rtol_T},
                                   context.device_context(), &temp_rtol_tensor);
    Tensor rtol_tensor = dito_T.Mul(temp_rtol_tensor, max_eigenvalue_tensor);
    Tensor tol_tensor;
    tol_tensor.mutable_data<T>(dim_out, context.GetPlace());
    ElementwiseComputeEx<GreaterElementFunctor<T>, platform::CUDADeviceContext,
                         T, T>(context, atol_tensor, &rtol_tensor, -1,
                               GreaterElementFunctor<T>(), &tol_tensor);

    tol_tensor.Resize(detail::NewAxisDim(tol_tensor.dims(), 1));

    Tensor compare_result;
    compare_result.mutable_data<int64_t>(detail::NewAxisDim(dim_out, k),
                                         context.GetPlace());
    int axis = -1;
Z
Zhang Ting 已提交
132 133 134 135
    ElementwiseComputeEx<GreaterThanFunctor<T, int64_t>,
                         platform::CUDADeviceContext, T, int64_t>(
        context, &eigenvalue_tensor, &tol_tensor, axis,
        GreaterThanFunctor<T, int64_t>(), &compare_result);
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    auto dito_int =
        math::DeviceIndependenceTensorOperations<platform::CUDADeviceContext,
                                                 int64_t>(context);
    std::vector<int> result_shape = framework::vectorize<int>(dim_out);
    Tensor result = dito_int.ReduceSum(compare_result, result_shape);
    out->ShareDataWith(result);
  }

  void GesvdjBatched(const platform::CUDADeviceContext& dev_ctx, int batchSize,
                     int m, int n, int k, T* A, T* U, T* V, T* S, int* info,
                     int thin_UV = 1) const;

  void SyevjBatched(const platform::CUDADeviceContext& dev_ctx, int batchSize,
                    int n, T* A, T* W, int* info) const;
};

template <>
void MatrixRankGPUKernel<float>::GesvdjBatched(
    const platform::CUDADeviceContext& dev_ctx, int batchSize, int m, int n,
    int k, float* A, float* U, float* V, float* S, int* info,
    int thin_UV) const {
  // do not compute singular vectors
  const cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_NOVECTOR;
  gesvdjInfo_t gesvdj_params = NULL;
  int lda = m;
  int ldu = m;
  int ldt = n;
  int lwork = 0;
  auto handle = dev_ctx.cusolver_dn_handle();
165
  PADDLE_ENFORCE_GPU_SUCCESS(
166
      platform::dynload::cusolverDnCreateGesvdjInfo(&gesvdj_params));
167
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cusolverDnSgesvdj_bufferSize(
168 169 170 171 172 173 174 175
      handle, jobz, thin_UV, m, n, A, lda, S, U, ldu, V, ldt, &lwork,
      gesvdj_params));
  auto workspace = memory::Alloc(dev_ctx, lwork * sizeof(float));
  float* workspace_ptr = reinterpret_cast<float*>(workspace->ptr());
  int stride_A = lda * n;
  int stride_U = ldu * (thin_UV ? k : m);
  int stride_V = ldt * (thin_UV ? k : n);
  for (int i = 0; i < batchSize; i++) {
176
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cusolverDnSgesvdj(
177 178 179 180
        handle, jobz, thin_UV, m, n, A + stride_A * i, lda, S + k * i,
        U + stride_U * i, ldu, V + stride_V * i, ldt, workspace_ptr, lwork,
        info, gesvdj_params));
    int error_info;
181
    memory::Copy(platform::CPUPlace(), &error_info, dev_ctx.GetPlace(), info,
182 183 184 185 186 187
                 sizeof(int), dev_ctx.stream());
    PADDLE_ENFORCE_EQ(
        error_info, 0,
        platform::errors::PreconditionNotMet(
            "For batch [%d]: CUSolver SVD is not zero. [%d]", i, error_info));
  }
188
  PADDLE_ENFORCE_GPU_SUCCESS(
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
      platform::dynload::cusolverDnDestroyGesvdjInfo(gesvdj_params));
}

template <>
void MatrixRankGPUKernel<double>::GesvdjBatched(
    const platform::CUDADeviceContext& dev_ctx, int batchSize, int m, int n,
    int k, double* A, double* U, double* V, double* S, int* info,
    int thin_UV) const {
  // do not compute singular vectors
  const cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_NOVECTOR;
  gesvdjInfo_t gesvdj_params = NULL;
  int lda = m;
  int ldu = m;
  int ldt = n;
  int lwork = 0;
  auto handle = dev_ctx.cusolver_dn_handle();
205
  PADDLE_ENFORCE_GPU_SUCCESS(
206
      platform::dynload::cusolverDnCreateGesvdjInfo(&gesvdj_params));
207
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cusolverDnDgesvdj_bufferSize(
208 209 210 211 212 213 214 215
      handle, jobz, thin_UV, m, n, A, lda, S, U, ldu, V, ldt, &lwork,
      gesvdj_params));
  auto workspace = memory::Alloc(dev_ctx, lwork * sizeof(double));
  double* workspace_ptr = reinterpret_cast<double*>(workspace->ptr());
  int stride_A = lda * n;
  int stride_U = ldu * (thin_UV ? k : m);
  int stride_V = ldt * (thin_UV ? k : n);
  for (int i = 0; i < batchSize; ++i) {
216
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cusolverDnDgesvdj(
217 218 219 220 221
        handle, jobz, thin_UV, m, n, A + stride_A * i, lda, S + k * i,
        U + stride_U * i, ldu, V + stride_V * i, ldt, workspace_ptr, lwork,
        info, gesvdj_params));
    // check the error info
    int error_info;
222
    memory::Copy(platform::CPUPlace(), &error_info, dev_ctx.GetPlace(), info,
223 224 225 226 227 228
                 sizeof(int), dev_ctx.stream());
    PADDLE_ENFORCE_EQ(
        error_info, 0,
        platform::errors::PreconditionNotMet(
            "For batch [%d]: CUSolver SVD is not zero. [%d]", i, error_info));
  }
229
  PADDLE_ENFORCE_GPU_SUCCESS(
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
      platform::dynload::cusolverDnDestroyGesvdjInfo(gesvdj_params));
}

template <>
void MatrixRankGPUKernel<float>::SyevjBatched(
    const platform::CUDADeviceContext& dev_ctx, int batchSize, int n, float* A,
    float* W, int* info) const {
  auto handle = dev_ctx.cusolver_dn_handle();
  // Compute eigenvalues only
  const cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_NOVECTOR;
  // matrix is saved as column-major in cusolver.
  // numpy and torch use lower triangle to compute eigenvalues, so here use
  // upper triangle
  cublasFillMode_t uplo = CUBLAS_FILL_MODE_UPPER;
  int lda = n;
  int stride_A = lda * n;
  int lwork = 0;
  syevjInfo_t params = NULL;
248
  PADDLE_ENFORCE_GPU_SUCCESS(
249
      platform::dynload::cusolverDnCreateSyevjInfo(&params));
250
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cusolverDnSsyevj_bufferSize(
251 252 253 254
      handle, jobz, uplo, n, A, lda, W, &lwork, params));
  auto workspace = memory::Alloc(dev_ctx, lwork * sizeof(float));
  float* workspace_ptr = reinterpret_cast<float*>(workspace->ptr());
  for (int i = 0; i < batchSize; i++) {
255
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cusolverDnSsyevj(
256 257 258 259
        handle, jobz, uplo, n, A + stride_A * i, lda, W + n * i, workspace_ptr,
        lwork, info, params));

    int error_info;
260
    memory::Copy(platform::CPUPlace(), &error_info, dev_ctx.GetPlace(), info,
261 262 263 264 265 266 267
                 sizeof(int), dev_ctx.stream());
    PADDLE_ENFORCE_EQ(
        error_info, 0,
        platform::errors::PreconditionNotMet(
            "For batch [%d]: CUSolver eigenvalues is not zero. [%d]", i,
            error_info));
  }
268
  PADDLE_ENFORCE_GPU_SUCCESS(
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
      platform::dynload::cusolverDnDestroySyevjInfo(params));
}

template <>
void MatrixRankGPUKernel<double>::SyevjBatched(
    const platform::CUDADeviceContext& dev_ctx, int batchSize, int n, double* A,
    double* W, int* info) const {
  auto handle = dev_ctx.cusolver_dn_handle();
  // Compute eigenvalues only
  const cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_NOVECTOR;
  //  upper triangle of A is stored
  cublasFillMode_t uplo = CUBLAS_FILL_MODE_UPPER;
  int lda = n;
  int stride_A = lda * n;
  int lwork = 0;
  syevjInfo_t params = NULL;
285
  PADDLE_ENFORCE_GPU_SUCCESS(
286
      platform::dynload::cusolverDnCreateSyevjInfo(&params));
287
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cusolverDnDsyevj_bufferSize(
288 289 290 291 292
      handle, jobz, uplo, n, A, lda, W, &lwork, params));
  auto workspace = memory::Alloc(dev_ctx, lwork * sizeof(double));
  double* workspace_ptr = reinterpret_cast<double*>(workspace->ptr());

  for (int i = 0; i < batchSize; i++) {
293
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cusolverDnDsyevj(
294 295 296
        handle, jobz, uplo, n, A + stride_A * i, lda, W + n * i, workspace_ptr,
        lwork, info, params));
    int error_info;
297
    memory::Copy(platform::CPUPlace(), &error_info, dev_ctx.GetPlace(), info,
298 299 300 301 302 303 304
                 sizeof(int), dev_ctx.stream());
    PADDLE_ENFORCE_EQ(
        error_info, 0,
        platform::errors::PreconditionNotMet(
            "For batch [%d]: CUSolver eigenvalues is not zero. [%d]", i,
            error_info));
  }
305
  PADDLE_ENFORCE_GPU_SUCCESS(
306 307 308 309 310 311 312 313 314 315
      platform::dynload::cusolverDnDestroySyevjInfo(params));
}

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(matrix_rank, ops::MatrixRankGPUKernel<float>,
                        ops::MatrixRankGPUKernel<double>);
#endif  // not PADDLE_WITH_HIP